Jump to navigation Jump to search

General

Display information for equation id:math.1199.255 on revision:1199

* Page found: Elektrodynamik Schöll (eq math.1199.255)

(force rerendering)

Occurrences on the following pages:

Hash: 6a09fff77356ff8062fde296046c8ac6

TeX (original user input):

\begin{align}
& {{Q}_{\alpha }}=-{{\varepsilon }_{0}}\oint\limits_{S\alpha }{{}}d\bar{f}\cdot {{\nabla }_{r}}\int_{V}^{{}}{{{d}^{3}}r}G\left( \bar{r}-\bar{r}\acute{\ } \right)\rho \left( \bar{r}\acute{\ } \right)=-{{\varepsilon }_{0}}^{2}\oint\limits_{S\alpha }{{}}d\bar{f}\cdot {{\nabla }_{r}}\sum\limits_{\beta =1}^{n}{{{\Phi }_{\beta }}\oint\limits_{{{S}_{\beta }}}{{}}d\bar{f}\acute{\ }\cdot {{\nabla }_{r\acute{\ }}}}G\left( \bar{r}-\bar{r}\acute{\ } \right) \\
& {{Q}_{\alpha }}=-{{\varepsilon }_{0}}\int_{L\alpha }^{{}}{{}}{{d}^{3}}r\int_{V}^{{}}{{}}{{d}^{3}}r\acute{\ }{{\Delta }_{r}}G\left( \bar{r}-\bar{r}\acute{\ } \right)\rho \left( \bar{r}\acute{\ } \right)-\sum\limits_{\beta =1}^{n}{{{\Phi }_{\beta }}{{\varepsilon }_{0}}^{2}\oint\limits_{{{S}_{\alpha }}}{{}}d\bar{f}\cdot {{\nabla }_{r}}}\oint\limits_{{{S}_{\beta }}}{{}}d\bar{f}\acute{\ }\cdot {{\nabla }_{r\acute{\ }}}G\left( \bar{r}-\bar{r}\acute{\ } \right) \\
& {{\Delta }_{r}}G\left( \bar{r}-\bar{r}\acute{\ } \right)=-\frac{1}{{{\varepsilon }_{0}}}\delta \left( \bar{r}-\bar{r}\acute{\ } \right)=0\quad f\ddot{u}r\quad \bar{r}\in {{L}_{\alpha }},\bar{r}\acute{\ }\in V, \\
& {{\varepsilon }_{0}}^{2}\oint\limits_{{{S}_{\alpha }}}{{}}d\bar{f}\cdot {{\nabla }_{r}}\oint\limits_{{{S}_{\beta }}}{{}}d\bar{f}\acute{\ }\cdot {{\nabla }_{r\acute{\ }}}G\left( \bar{r}-\bar{r}\acute{\ } \right)=:-{{C}_{\alpha \beta }} \\
& \Rightarrow {{Q}_{\alpha }}=-\sum\limits_{\beta =1}^{n}{{{\Phi }_{\beta }}{{\varepsilon }_{0}}^{2}\oint\limits_{{{S}_{\alpha }}}{{}}d\bar{f}\cdot {{\nabla }_{r}}}\oint\limits_{{{S}_{\beta }}}{{}}d\bar{f}\acute{\ }\cdot {{\nabla }_{r\acute{\ }}}G\left( \bar{r}-\bar{r}\acute{\ } \right)=\sum\limits_{\beta =1}^{n}{{{C}_{\alpha \beta }}{{\Phi }_{\beta }}} \\
\end{align}

TeX (checked):

{\begin{aligned}&{{Q}_{\alpha }}=-{{\varepsilon }_{0}}\oint \limits _{S\alpha }{}d{\bar {f}}\cdot {{\nabla }_{r}}\int _{V}^{}{{{d}^{3}}r}G\left({\bar {r}}-{\bar {r}}{\acute {\ }}\right)\rho \left({\bar {r}}{\acute {\ }}\right)=-{{\varepsilon }_{0}}^{2}\oint \limits _{S\alpha }{}d{\bar {f}}\cdot {{\nabla }_{r}}\sum \limits _{\beta =1}^{n}{{{\Phi }_{\beta }}\oint \limits _{{S}_{\beta }}{}d{\bar {f}}{\acute {\ }}\cdot {{\nabla }_{r{\acute {\ }}}}}G\left({\bar {r}}-{\bar {r}}{\acute {\ }}\right)\\&{{Q}_{\alpha }}=-{{\varepsilon }_{0}}\int _{L\alpha }^{}{}{{d}^{3}}r\int _{V}^{}{}{{d}^{3}}r{\acute {\ }}{{\Delta }_{r}}G\left({\bar {r}}-{\bar {r}}{\acute {\ }}\right)\rho \left({\bar {r}}{\acute {\ }}\right)-\sum \limits _{\beta =1}^{n}{{{\Phi }_{\beta }}{{\varepsilon }_{0}}^{2}\oint \limits _{{S}_{\alpha }}{}d{\bar {f}}\cdot {{\nabla }_{r}}}\oint \limits _{{S}_{\beta }}{}d{\bar {f}}{\acute {\ }}\cdot {{\nabla }_{r{\acute {\ }}}}G\left({\bar {r}}-{\bar {r}}{\acute {\ }}\right)\\&{{\Delta }_{r}}G\left({\bar {r}}-{\bar {r}}{\acute {\ }}\right)=-{\frac {1}{{\varepsilon }_{0}}}\delta \left({\bar {r}}-{\bar {r}}{\acute {\ }}\right)=0\quad f{\ddot {u}}r\quad {\bar {r}}\in {{L}_{\alpha }},{\bar {r}}{\acute {\ }}\in V,\\&{{\varepsilon }_{0}}^{2}\oint \limits _{{S}_{\alpha }}{}d{\bar {f}}\cdot {{\nabla }_{r}}\oint \limits _{{S}_{\beta }}{}d{\bar {f}}{\acute {\ }}\cdot {{\nabla }_{r{\acute {\ }}}}G\left({\bar {r}}-{\bar {r}}{\acute {\ }}\right)=:-{{C}_{\alpha \beta }}\\&\Rightarrow {{Q}_{\alpha }}=-\sum \limits _{\beta =1}^{n}{{{\Phi }_{\beta }}{{\varepsilon }_{0}}^{2}\oint \limits _{{S}_{\alpha }}{}d{\bar {f}}\cdot {{\nabla }_{r}}}\oint \limits _{{S}_{\beta }}{}d{\bar {f}}{\acute {\ }}\cdot {{\nabla }_{r{\acute {\ }}}}G\left({\bar {r}}-{\bar {r}}{\acute {\ }}\right)=\sum \limits _{\beta =1}^{n}{{{C}_{\alpha \beta }}{{\Phi }_{\beta }}}\\\end{aligned}}

LaTeXML (experimental; uses MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimental; no images) rendering

MathML (15.28 KB / 912 B) :

Qα=ε0Sαdf¯rVd3rG(r¯r¯´)ρ(r¯´)=ε02Sαdf¯rβ=1nΦβSβdf¯´r´G(r¯r¯´)Qα=ε0Lαd3rVd3r´ΔrG(r¯r¯´)ρ(r¯´)β=1nΦβε02Sαdf¯rSβdf¯´r´G(r¯r¯´)ΔrG(r¯r¯´)=1ε0δ(r¯r¯´)=0fu¨rr¯Lα,r¯´V,ε02Sαdf¯rSβdf¯´r´G(r¯r¯´)=:CαβQα=β=1nΦβε02Sαdf¯rSβdf¯´r´G(r¯r¯´)=β=1nCαβΦβ
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><msub><mi>Q</mi><mrow data-mjx-texclass="ORD"><mi>&#x03B1;</mi></mrow></msub><mo>=</mo><mo>&#x2212;</mo><msub><mi>&#x03B5;</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><munder><mstyle displaystyle="true"><mo>&#x222E;</mo></mstyle><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>S</mi><mi>&#x03B1;</mi></mrow></mrow></munder><mi>d</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>f</mi><mo>¯</mo></mover></mrow></mrow><mo>&#x22C5;</mo><msub><mi mathvariant="normal">&#x2207;</mi><mrow data-mjx-texclass="ORD"><mi>r</mi></mrow></msub><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><mi>V</mi></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover></mstyle><mrow data-mjx-texclass="ORD"><msup><mi>d</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup><mi>r</mi></mrow><mi>G</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mi>&#x03C1;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mo>&#x2212;</mo><msup><msub><mi>&#x03B5;</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><munder><mstyle displaystyle="true"><mo>&#x222E;</mo></mstyle><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>S</mi><mi>&#x03B1;</mi></mrow></mrow></munder><mi>d</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>f</mi><mo>¯</mo></mover></mrow></mrow><mo>&#x22C5;</mo><msub><mi mathvariant="normal">&#x2207;</mi><mrow data-mjx-texclass="ORD"><mi>r</mi></mrow></msub><munderover><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x03B2;</mi><mo>=</mo><mn>1</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></munderover><mrow data-mjx-texclass="ORD"><msub><mi mathvariant="normal">&#x03A6;</mi><mrow data-mjx-texclass="ORD"><mi>&#x03B2;</mi></mrow></msub><munder><mstyle displaystyle="true"><mo>&#x222E;</mo></mstyle><mrow data-mjx-texclass="ORD"><msub><mi>S</mi><mrow data-mjx-texclass="ORD"><mi>&#x03B2;</mi></mrow></msub></mrow></munder><mi>d</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>f</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo>&#x22C5;</mo><msub><mi mathvariant="normal">&#x2207;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>r</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow></mrow></mrow></msub></mrow><mi>G</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><msub><mi>Q</mi><mrow data-mjx-texclass="ORD"><mi>&#x03B1;</mi></mrow></msub><mo>=</mo><mo>&#x2212;</mo><msub><mi>&#x03B5;</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>L</mi><mi>&#x03B1;</mi></mrow></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover></mstyle><msup><mi>d</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup><mi>r</mi><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><mi>V</mi></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover></mstyle><msup><mi>d</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup><mi>r</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><msub><mi mathvariant="normal">&#x0394;</mi><mrow data-mjx-texclass="ORD"><mi>r</mi></mrow></msub><mi>G</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mi>&#x03C1;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>&#x2212;</mo><munderover><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x03B2;</mi><mo>=</mo><mn>1</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></munderover><mrow data-mjx-texclass="ORD"><msub><mi mathvariant="normal">&#x03A6;</mi><mrow data-mjx-texclass="ORD"><mi>&#x03B2;</mi></mrow></msub><msup><msub><mi>&#x03B5;</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><munder><mstyle displaystyle="true"><mo>&#x222E;</mo></mstyle><mrow data-mjx-texclass="ORD"><msub><mi>S</mi><mrow data-mjx-texclass="ORD"><mi>&#x03B1;</mi></mrow></msub></mrow></munder><mi>d</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>f</mi><mo>¯</mo></mover></mrow></mrow><mo>&#x22C5;</mo><msub><mi mathvariant="normal">&#x2207;</mi><mrow data-mjx-texclass="ORD"><mi>r</mi></mrow></msub></mrow><munder><mstyle displaystyle="true"><mo>&#x222E;</mo></mstyle><mrow data-mjx-texclass="ORD"><msub><mi>S</mi><mrow data-mjx-texclass="ORD"><mi>&#x03B2;</mi></mrow></msub></mrow></munder><mi>d</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>f</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo>&#x22C5;</mo><msub><mi mathvariant="normal">&#x2207;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>r</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow></mrow></mrow></msub><mi>G</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><msub><mi mathvariant="normal">&#x0394;</mi><mrow data-mjx-texclass="ORD"><mi>r</mi></mrow></msub><mi>G</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><msub><mi>&#x03B5;</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mrow></mfrac></mrow><mi>&#x03B4;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mn>0</mn><mspace width="1em"></mspace><mi>f</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>u</mi><mo>¨</mo></mover></mrow></mrow><mi>r</mi><mspace width="1em"></mspace><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>&#x2208;</mo><msub><mi>L</mi><mrow data-mjx-texclass="ORD"><mi>&#x03B1;</mi></mrow></msub><mo>,</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo>&#x2208;</mo><mi>V</mi><mo>,</mo></mtd></mtr><mtr><mtd></mtd><mtd><msup><msub><mi>&#x03B5;</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><munder><mstyle displaystyle="true"><mo>&#x222E;</mo></mstyle><mrow data-mjx-texclass="ORD"><msub><mi>S</mi><mrow data-mjx-texclass="ORD"><mi>&#x03B1;</mi></mrow></msub></mrow></munder><mi>d</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>f</mi><mo>¯</mo></mover></mrow></mrow><mo>&#x22C5;</mo><msub><mi mathvariant="normal">&#x2207;</mi><mrow data-mjx-texclass="ORD"><mi>r</mi></mrow></msub><munder><mstyle displaystyle="true"><mo>&#x222E;</mo></mstyle><mrow data-mjx-texclass="ORD"><msub><mi>S</mi><mrow data-mjx-texclass="ORD"><mi>&#x03B2;</mi></mrow></msub></mrow></munder><mi>d</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>f</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo>&#x22C5;</mo><msub><mi mathvariant="normal">&#x2207;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>r</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow></mrow></mrow></msub><mi>G</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mi>:</mi><mo>&#x2212;</mo><msub><mi>C</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x03B1;</mi><mi>&#x03B2;</mi></mrow></mrow></msub></mtd></mtr><mtr><mtd></mtd><mtd><mo>&#x21D2;</mo><msub><mi>Q</mi><mrow data-mjx-texclass="ORD"><mi>&#x03B1;</mi></mrow></msub><mo>=</mo><mo>&#x2212;</mo><munderover><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x03B2;</mi><mo>=</mo><mn>1</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></munderover><mrow data-mjx-texclass="ORD"><msub><mi mathvariant="normal">&#x03A6;</mi><mrow data-mjx-texclass="ORD"><mi>&#x03B2;</mi></mrow></msub><msup><msub><mi>&#x03B5;</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><munder><mstyle displaystyle="true"><mo>&#x222E;</mo></mstyle><mrow data-mjx-texclass="ORD"><msub><mi>S</mi><mrow data-mjx-texclass="ORD"><mi>&#x03B1;</mi></mrow></msub></mrow></munder><mi>d</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>f</mi><mo>¯</mo></mover></mrow></mrow><mo>&#x22C5;</mo><msub><mi mathvariant="normal">&#x2207;</mi><mrow data-mjx-texclass="ORD"><mi>r</mi></mrow></msub></mrow><munder><mstyle displaystyle="true"><mo>&#x222E;</mo></mstyle><mrow data-mjx-texclass="ORD"><msub><mi>S</mi><mrow data-mjx-texclass="ORD"><mi>&#x03B2;</mi></mrow></msub></mrow></munder><mi>d</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>f</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo>&#x22C5;</mo><msub><mi mathvariant="normal">&#x2207;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>r</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow></mrow></mrow></msub><mi>G</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><munderover><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x03B2;</mi><mo>=</mo><mn>1</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></munderover><mrow data-mjx-texclass="ORD"><msub><mi>C</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x03B1;</mi><mi>&#x03B2;</mi></mrow></mrow></msub><msub><mi mathvariant="normal">&#x03A6;</mi><mrow data-mjx-texclass="ORD"><mi>&#x03B2;</mi></mrow></msub></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Elektrodynamik Schöll page

Identifiers

  • Qα
  • ε0
  • S
  • α
  • d
  • f¯
  • r
  • V
  • r
  • G
  • r¯
  • r¯
  • ´
  • ρ
  • r¯
  • ´
  • ε0
  • S
  • α
  • d
  • f¯
  • r
  • β
  • n
  • Φβ
  • Sβ
  • d
  • f¯
  • ´
  • r
  • ´
  • G
  • r¯
  • r¯
  • ´
  • Qα
  • ε0
  • L
  • α
  • r
  • V
  • r
  • ´
  • Δr
  • G
  • r¯
  • r¯
  • ´
  • ρ
  • r¯
  • ´
  • β
  • n
  • Φβ
  • ε0
  • Sα
  • d
  • f¯
  • r
  • Sβ
  • d
  • f¯
  • ´
  • r
  • ´
  • G
  • r¯
  • r¯
  • ´
  • Δr
  • G
  • r¯
  • r¯
  • ´
  • ε0
  • δ
  • r¯
  • r¯
  • ´
  • f
  • u¨
  • r
  • r¯
  • Lα
  • r¯
  • ´
  • V
  • ε0
  • Sα
  • d
  • f¯
  • r
  • Sβ
  • d
  • f¯
  • ´
  • r
  • ´
  • G
  • r¯
  • r¯
  • ´
  • Cαβ
  • Qα
  • β
  • n
  • Φβ
  • ε0
  • Sα
  • d
  • f¯
  • r
  • Sβ
  • d
  • f¯
  • ´
  • r
  • ´
  • G
  • r¯
  • r¯
  • ´
  • β
  • n
  • Cαβ
  • Φβ

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results