Jump to navigation
		Jump to search
		
General
Display information for equation id:math.1199.1077 on revision:1199
* Page found: Elektrodynamik Schöll (eq math.1199.1077)
(force rerendering)Occurrences on the following pages:
Hash: d76f9d801df2f4d3a74919d7f850139a
TeX (original user input):
\begin{align}
& {{k}^{2}}=\frac{{{\omega }^{2}}}{{{c}^{2}}}\left( {{n}^{2}}-{{\gamma }^{2}}+2in\gamma  \right)\approx \frac{{{\omega }^{2}}}{{{c}^{2}}}\varepsilon \mu \frac{i}{\omega \tau } \\
& \Rightarrow {{n}^{2}}-{{\gamma }^{2}}\approx 0 \\
& n\gamma \approx {{n}^{2}}\approx {{\gamma }^{2}}\approx \frac{\varepsilon \mu }{2\omega \tau }\Rightarrow n=\gamma =\sqrt{\frac{\varepsilon \mu }{2\omega \tau }} \\
& \tan \phi =\frac{\gamma }{n}\approx 1\Rightarrow \phi \approx \frac{\pi }{4} \\
\end{align}
TeX (checked):
{\begin{aligned}&{{k}^{2}}={\frac {{\omega }^{2}}{{c}^{2}}}\left({{n}^{2}}-{{\gamma }^{2}}+2in\gamma \right)\approx {\frac {{\omega }^{2}}{{c}^{2}}}\varepsilon \mu {\frac {i}{\omega \tau }}\\&\Rightarrow {{n}^{2}}-{{\gamma }^{2}}\approx 0\\&n\gamma \approx {{n}^{2}}\approx {{\gamma }^{2}}\approx {\frac {\varepsilon \mu }{2\omega \tau }}\Rightarrow n=\gamma ={\sqrt {\frac {\varepsilon \mu }{2\omega \tau }}}\\&\tan \phi ={\frac {\gamma }{n}}\approx 1\Rightarrow \phi \approx {\frac {\pi }{4}}\\\end{aligned}}
LaTeXML (experimental; uses MathML) rendering
SVG image empty. Force Re-Rendering
SVG (0 B / 8 B) :
MathML (experimental; no images) rendering
MathML (3.238 KB / 528 B) :

<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><msup><mi>k</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mi>ω</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><msup><mi>c</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mi>n</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>−</mo><msup><mi>γ</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>+</mo><mn>2</mn><mi>i</mi><mi>n</mi><mi>γ</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>≈</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mi>ω</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><msup><mi>c</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mfrac></mrow><mi>ε</mi><mi>μ</mi><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>ω</mi><mi>τ</mi></mrow></mrow></mfrac></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mo>⇒</mo><msup><mi>n</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>−</mo><msup><mi>γ</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>≈</mo><mn>0</mn></mtd></mtr><mtr><mtd></mtd><mtd><mi>n</mi><mi>γ</mi><mo>≈</mo><msup><mi>n</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>≈</mo><msup><mi>γ</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>≈</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>ε</mi><mi>μ</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>ω</mi><mi>τ</mi></mrow></mrow></mfrac></mrow><mo>⇒</mo><mi>n</mi><mo>=</mo><mi>γ</mi><mo>=</mo><mrow data-mjx-texclass="ORD"><msqrt><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>ε</mi><mi>μ</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>ω</mi><mi>τ</mi></mrow></mrow></mfrac></mrow></msqrt></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mi>tan</mi><mo>⁡</mo><mi>ϕ</mi><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>γ</mi></mrow><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></mfrac></mrow><mo>≈</mo><mn>1</mn><mo>⇒</mo><mi>ϕ</mi><mo>≈</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>π</mi></mrow><mrow data-mjx-texclass="ORD"><mn>4</mn></mrow></mfrac></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>
Translations to Computer Algebra Systems
Translation to Maple
In Maple: 
Translation to Mathematica
In Mathematica: 
Similar pages
Calculated based on the variables occurring on the entire Elektrodynamik Schöll page
Identifiers
MathML observations
0results
0results
no statistics present please run the maintenance script ExtractFeatures.php
0 results
0 results