Jump to navigation Jump to search

General

Display information for equation id:math.1199.1077 on revision:1199

* Page found: Elektrodynamik Schöll (eq math.1199.1077)

(force rerendering)

Occurrences on the following pages:

Hash: d76f9d801df2f4d3a74919d7f850139a

TeX (original user input):

\begin{align}
& {{k}^{2}}=\frac{{{\omega }^{2}}}{{{c}^{2}}}\left( {{n}^{2}}-{{\gamma }^{2}}+2in\gamma  \right)\approx \frac{{{\omega }^{2}}}{{{c}^{2}}}\varepsilon \mu \frac{i}{\omega \tau } \\
& \Rightarrow {{n}^{2}}-{{\gamma }^{2}}\approx 0 \\
& n\gamma \approx {{n}^{2}}\approx {{\gamma }^{2}}\approx \frac{\varepsilon \mu }{2\omega \tau }\Rightarrow n=\gamma =\sqrt{\frac{\varepsilon \mu }{2\omega \tau }} \\
& \tan \phi =\frac{\gamma }{n}\approx 1\Rightarrow \phi \approx \frac{\pi }{4} \\
\end{align}

TeX (checked):

{\begin{aligned}&{{k}^{2}}={\frac {{\omega }^{2}}{{c}^{2}}}\left({{n}^{2}}-{{\gamma }^{2}}+2in\gamma \right)\approx {\frac {{\omega }^{2}}{{c}^{2}}}\varepsilon \mu {\frac {i}{\omega \tau }}\\&\Rightarrow {{n}^{2}}-{{\gamma }^{2}}\approx 0\\&n\gamma \approx {{n}^{2}}\approx {{\gamma }^{2}}\approx {\frac {\varepsilon \mu }{2\omega \tau }}\Rightarrow n=\gamma ={\sqrt {\frac {\varepsilon \mu }{2\omega \tau }}}\\&\tan \phi ={\frac {\gamma }{n}}\approx 1\Rightarrow \phi \approx {\frac {\pi }{4}}\\\end{aligned}}

LaTeXML (experimental; uses MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimental; no images) rendering

MathML (3.238 KB / 528 B) :

k2=ω2c2(n2γ2+2inγ)ω2c2εμiωτn2γ20nγn2γ2εμ2ωτn=γ=εμ2ωτtanϕ=γn1ϕπ4
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><msup><mi>k</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><msup><mi>c</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mi>n</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>&#x2212;</mo><msup><mi>&#x03B3;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>+</mo><mn>2</mn><mi>i</mi><mi>n</mi><mi>&#x03B3;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>&#x2248;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><msup><mi>c</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mfrac></mrow><mi>&#x03B5;</mi><mi>&#x03BC;</mi><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x03C9;</mi><mi>&#x03C4;</mi></mrow></mrow></mfrac></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mo>&#x21D2;</mo><msup><mi>n</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>&#x2212;</mo><msup><mi>&#x03B3;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>&#x2248;</mo><mn>0</mn></mtd></mtr><mtr><mtd></mtd><mtd><mi>n</mi><mi>&#x03B3;</mi><mo>&#x2248;</mo><msup><mi>n</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>&#x2248;</mo><msup><mi>&#x03B3;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>&#x2248;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x03B5;</mi><mi>&#x03BC;</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>&#x03C9;</mi><mi>&#x03C4;</mi></mrow></mrow></mfrac></mrow><mo>&#x21D2;</mo><mi>n</mi><mo>=</mo><mi>&#x03B3;</mi><mo>=</mo><mrow data-mjx-texclass="ORD"><msqrt><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x03B5;</mi><mi>&#x03BC;</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>&#x03C9;</mi><mi>&#x03C4;</mi></mrow></mrow></mfrac></mrow></msqrt></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mi>tan</mi><mo>&#x2061;</mo><mi>&#x03D5;</mi><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>&#x03B3;</mi></mrow><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></mfrac></mrow><mo>&#x2248;</mo><mn>1</mn><mo>&#x21D2;</mo><mi>&#x03D5;</mi><mo>&#x2248;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>&#x03C0;</mi></mrow><mrow data-mjx-texclass="ORD"><mn>4</mn></mrow></mfrac></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Elektrodynamik Schöll page

Identifiers

  • k
  • ω
  • c
  • n
  • γ
  • i
  • n
  • γ
  • ω
  • c
  • ε
  • μ
  • i
  • ω
  • τ
  • n
  • γ
  • n
  • γ
  • n
  • γ
  • ε
  • μ
  • ω
  • τ
  • n
  • γ
  • ε
  • μ
  • ω
  • τ
  • ϕ
  • γ
  • n
  • ϕ
  • π

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results