Jump to navigation
		Jump to search
		
General
Display information for equation id:math.1198.682 on revision:1198
* Page found: Elektrodynamik Schöll (eq math.1198.682)
(force rerendering)Occurrences on the following pages:
Hash: 6cd471a363b6e5807c9af57d7dd35e48
TeX (original user input):
\begin{align}
& {{d}^{3}}q={{q}^{2}}dq\sin \vartheta d\vartheta d\phi  \\
& \bar{q}\bar{s}=qs\cos \vartheta  \\
& G(\bar{s},\tau )=\frac{c}{{{\left( 2\pi  \right)}^{3}}}\int\limits_{0}^{\infty }{{}}dqq\left( \frac{{{e}^{-icq\tau }}-{{e}^{icq\tau }}}{-2i} \right)\int\limits_{-1}^{1}{{}}d\cos \vartheta {{e}^{iqs\cos \vartheta }}\int\limits_{0}^{2\pi }{{}}d\phi  \\
& \int\limits_{-1}^{1}{{}}d\cos \vartheta {{e}^{iqs\cos \vartheta }}=\frac{{{e}^{iqs}}-{{e}^{-iqs}}}{iqs} \\
& \xi :=cq \\
& \Rightarrow G(\bar{s},\tau )=\frac{c}{2{{\left( 2\pi  \right)}^{2}}s}\int\limits_{0}^{\infty }{{}}d\xi \left\{ {{e}^{i\left( \tau -\frac{s}{c} \right)\xi }}+{{e}^{-i\left( \tau -\frac{s}{c} \right)\xi }}-{{e}^{i\left( \tau +\frac{s}{c} \right)\xi }}-{{e}^{-i\left( \tau +\frac{s}{c} \right)\xi }} \right\} \\
& \Rightarrow G(\bar{s},\tau )=\frac{c}{4\pi s}\int\limits_{0}^{\infty }{{}}d\xi \left\{ \delta \left( \tau -\frac{s}{c} \right)-\delta \left( \tau +\frac{s}{c} \right) \right\} \\
& \delta \left( \tau +\frac{s}{c} \right)=0\quad f\ddot{u}r\ \tau >0 \\
\end{align}
TeX (checked):
{\begin{aligned}&{{d}^{3}}q={{q}^{2}}dq\sin \vartheta d\vartheta d\phi \\&{\bar {q}}{\bar {s}}=qs\cos \vartheta \\&G({\bar {s}},\tau )={\frac {c}{{\left(2\pi \right)}^{3}}}\int \limits _{0}^{\infty }{}dqq\left({\frac {{{e}^{-icq\tau }}-{{e}^{icq\tau }}}{-2i}}\right)\int \limits _{-1}^{1}{}d\cos \vartheta {{e}^{iqs\cos \vartheta }}\int \limits _{0}^{2\pi }{}d\phi \\&\int \limits _{-1}^{1}{}d\cos \vartheta {{e}^{iqs\cos \vartheta }}={\frac {{{e}^{iqs}}-{{e}^{-iqs}}}{iqs}}\\&\xi :=cq\\&\Rightarrow G({\bar {s}},\tau )={\frac {c}{2{{\left(2\pi \right)}^{2}}s}}\int \limits _{0}^{\infty }{}d\xi \left\{{{e}^{i\left(\tau -{\frac {s}{c}}\right)\xi }}+{{e}^{-i\left(\tau -{\frac {s}{c}}\right)\xi }}-{{e}^{i\left(\tau +{\frac {s}{c}}\right)\xi }}-{{e}^{-i\left(\tau +{\frac {s}{c}}\right)\xi }}\right\}\\&\Rightarrow G({\bar {s}},\tau )={\frac {c}{4\pi s}}\int \limits _{0}^{\infty }{}d\xi \left\{\delta \left(\tau -{\frac {s}{c}}\right)-\delta \left(\tau +{\frac {s}{c}}\right)\right\}\\&\delta \left(\tau +{\frac {s}{c}}\right)=0\quad f{\ddot {u}}r\ \tau >0\\\end{aligned}}
LaTeXML (experimental; uses MathML) rendering
SVG image empty. Force Re-Rendering
SVG (0 B / 8 B) :
MathML (experimental; no images) rendering
MathML (8.812 KB / 859 B) :

<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><msup><mi>d</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup><mi>q</mi><mo>=</mo><msup><mi>q</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mi>d</mi><mi>q</mi><mi>sin</mi><mo>⁡</mo><mi>ϑ</mi><mi>d</mi><mi>ϑ</mi><mi>d</mi><mi>ϕ</mi></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>q</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>s</mi><mo>¯</mo></mover></mrow></mrow><mo>=</mo><mi>q</mi><mi>s</mi><mi>cos</mi><mo>⁡</mo><mi>ϑ</mi></mtd></mtr><mtr><mtd></mtd><mtd><mi>G</mi><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>s</mi><mo>¯</mo></mover></mrow></mrow><mo>,</mo><mi>τ</mi><mo stretchy="false">)</mo><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>c</mi></mrow><mrow data-mjx-texclass="ORD"><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mn>2</mn><mi>π</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup></mrow></mfrac></mrow><munderover><mo form="prefix" texclass="OP">∫</mo><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">∞</mi></mrow></munderover><mi>d</mi><mi>q</mi><mi>q</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>−</mo><mi>i</mi><mi>c</mi><mi>q</mi><mi>τ</mi></mrow></mrow></msup><mo>−</mo><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mi>c</mi><mi>q</mi><mi>τ</mi></mrow></mrow></msup></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>−</mo><mn>2</mn><mi>i</mi></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><munderover><mo form="prefix" texclass="OP">∫</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>−</mo><mn>1</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></munderover><mi>d</mi><mi>cos</mi><mo>⁡</mo><mi>ϑ</mi><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mi>q</mi><mi>s</mi><mi>cos</mi><mo>⁡</mo><mi>ϑ</mi></mrow></mrow></msup><munderover><mo form="prefix" texclass="OP">∫</mo><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>π</mi></mrow></mrow></munderover><mi>d</mi><mi>ϕ</mi></mtd></mtr><mtr><mtd></mtd><mtd><munderover><mo form="prefix" texclass="OP">∫</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>−</mo><mn>1</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></munderover><mi>d</mi><mi>cos</mi><mo>⁡</mo><mi>ϑ</mi><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mi>q</mi><mi>s</mi><mi>cos</mi><mo>⁡</mo><mi>ϑ</mi></mrow></mrow></msup><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mi>q</mi><mi>s</mi></mrow></mrow></msup><mo>−</mo><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>−</mo><mi>i</mi><mi>q</mi><mi>s</mi></mrow></mrow></msup></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mi>q</mi><mi>s</mi></mrow></mrow></mfrac></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mi>ξ</mi><mi>:</mi><mo>=</mo><mi>c</mi><mi>q</mi></mtd></mtr><mtr><mtd></mtd><mtd><mo>⇒</mo><mi>G</mi><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>s</mi><mo>¯</mo></mover></mrow></mrow><mo>,</mo><mi>τ</mi><mo stretchy="false">)</mo><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>c</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mn>2</mn><mi>π</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mi>s</mi></mrow></mrow></mfrac></mrow><munderover><mo form="prefix" texclass="OP">∫</mo><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">∞</mi></mrow></munderover><mi>d</mi><mi>ξ</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">{</mo><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>τ</mi><mo>−</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>s</mi></mrow><mrow data-mjx-texclass="ORD"><mi>c</mi></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mi>ξ</mi></mrow></mrow></msup><mo>+</mo><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>−</mo><mi>i</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>τ</mi><mo>−</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>s</mi></mrow><mrow data-mjx-texclass="ORD"><mi>c</mi></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mi>ξ</mi></mrow></mrow></msup><mo>−</mo><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>τ</mi><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>s</mi></mrow><mrow data-mjx-texclass="ORD"><mi>c</mi></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mi>ξ</mi></mrow></mrow></msup><mo>−</mo><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>−</mo><mi>i</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>τ</mi><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>s</mi></mrow><mrow data-mjx-texclass="ORD"><mi>c</mi></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mi>ξ</mi></mrow></mrow></msup><mo data-mjx-texclass="CLOSE">}</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mo>⇒</mo><mi>G</mi><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>s</mi><mo>¯</mo></mover></mrow></mrow><mo>,</mo><mi>τ</mi><mo stretchy="false">)</mo><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>c</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>4</mn><mi>π</mi><mi>s</mi></mrow></mrow></mfrac></mrow><munderover><mo form="prefix" texclass="OP">∫</mo><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">∞</mi></mrow></munderover><mi>d</mi><mi>ξ</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">{</mo><mi>δ</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>τ</mi><mo>−</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>s</mi></mrow><mrow data-mjx-texclass="ORD"><mi>c</mi></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>−</mo><mi>δ</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>τ</mi><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>s</mi></mrow><mrow data-mjx-texclass="ORD"><mi>c</mi></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo data-mjx-texclass="CLOSE">}</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mi>δ</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>τ</mi><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>s</mi></mrow><mrow data-mjx-texclass="ORD"><mi>c</mi></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mn>0</mn><mspace width="1em"></mspace><mi>f</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>u</mi><mo>¨</mo></mover></mrow></mrow><mi>r</mi><mspace width="0.5em"/><mi>τ</mi><mo>></mo><mn>0</mn></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>
Translations to Computer Algebra Systems
Translation to Maple
In Maple: 
Translation to Mathematica
In Mathematica: 
Similar pages
Calculated based on the variables occurring on the entire Elektrodynamik Schöll page
Identifiers
MathML observations
0results
0results
no statistics present please run the maintenance script ExtractFeatures.php
0 results
0 results