Jump to navigation Jump to search

General

Display information for equation id:math.1198.328 on revision:1198

* Page found: Elektrodynamik Schöll (eq math.1198.328)

(force rerendering)

Occurrences on the following pages:

Hash: 32eebfb9934d52422be3de774077308c

TeX (original user input):

\begin{align}
& \Rightarrow \nabla \cdot \bar{A}(\bar{r})=-\frac{{{\mu }_{0}}}{4\pi }\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }{{\nabla }_{r\acute{\ }}}\cdot \left( \frac{\bar{j}(\bar{r}\acute{\ })}{\left| \bar{r}-\bar{r}\acute{\ } \right|} \right)-\frac{\partial }{\partial t}\frac{{{\mu }_{0}}}{4\pi }\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }\frac{\rho (\bar{r}\acute{\ },t)}{\left| \bar{r}-\bar{r}\acute{\ } \right|} \\
& \frac{{{\mu }_{0}}}{4\pi }\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }\frac{\rho (\bar{r}\acute{\ },t)}{\left| \bar{r}-\bar{r}\acute{\ } \right|}={{\mu }_{0}}{{\varepsilon }_{0}}\Phi (\bar{r},t) \\
& \Rightarrow \nabla \cdot \bar{A}(\bar{r})=-\frac{{{\mu }_{0}}}{4\pi }\oint\limits_{S\infty }{{}}{{d}^{3}}\bar{f}\acute{\ }\left( \frac{\bar{j}(\bar{r}\acute{\ })}{\left| \bar{r}-\bar{r}\acute{\ } \right|} \right)-{{\mu }_{0}}{{\varepsilon }_{0}}\frac{\partial }{\partial t}\Phi (\bar{r},t) \\
\end{align}

TeX (checked):

{\begin{aligned}&\Rightarrow \nabla \cdot {\bar {A}}({\bar {r}})=-{\frac {{\mu }_{0}}{4\pi }}\int _{{R}^{3}}^{}{}{{d}^{3}}r{\acute {\ }}{{\nabla }_{r{\acute {\ }}}}\cdot \left({\frac {{\bar {j}}({\bar {r}}{\acute {\ }})}{\left|{\bar {r}}-{\bar {r}}{\acute {\ }}\right|}}\right)-{\frac {\partial }{\partial t}}{\frac {{\mu }_{0}}{4\pi }}\int _{{R}^{3}}^{}{}{{d}^{3}}r{\acute {\ }}{\frac {\rho ({\bar {r}}{\acute {\ }},t)}{\left|{\bar {r}}-{\bar {r}}{\acute {\ }}\right|}}\\&{\frac {{\mu }_{0}}{4\pi }}\int _{{R}^{3}}^{}{}{{d}^{3}}r{\acute {\ }}{\frac {\rho ({\bar {r}}{\acute {\ }},t)}{\left|{\bar {r}}-{\bar {r}}{\acute {\ }}\right|}}={{\mu }_{0}}{{\varepsilon }_{0}}\Phi ({\bar {r}},t)\\&\Rightarrow \nabla \cdot {\bar {A}}({\bar {r}})=-{\frac {{\mu }_{0}}{4\pi }}\oint \limits _{S\infty }{}{{d}^{3}}{\bar {f}}{\acute {\ }}\left({\frac {{\bar {j}}({\bar {r}}{\acute {\ }})}{\left|{\bar {r}}-{\bar {r}}{\acute {\ }}\right|}}\right)-{{\mu }_{0}}{{\varepsilon }_{0}}{\frac {\partial }{\partial t}}\Phi ({\bar {r}},t)\\\end{aligned}}

LaTeXML (experimental; uses MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimental; no images) rendering

MathML (10.017 KB / 744 B) :

A¯(r¯)=μ04πR3d3r´r´(j¯(r¯´)|r¯r¯´|)tμ04πR3d3r´ρ(r¯´,t)|r¯r¯´|μ04πR3d3r´ρ(r¯´,t)|r¯r¯´|=μ0ε0Φ(r¯,t)A¯(r¯)=μ04πSd3f¯´(j¯(r¯´)|r¯r¯´|)μ0ε0tΦ(r¯,t)
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mo>&#x21D2;</mo><mi mathvariant="normal">&#x2207;</mi><mo>&#x22C5;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>A</mi><mo>¯</mo></mover></mrow></mrow><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo stretchy="false">)</mo><mo>=</mo><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msub><mi>&#x03BC;</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>4</mn><mi>&#x03C0;</mi></mrow></mrow></mfrac></mrow><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><msup><mi>R</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover></mstyle><msup><mi>d</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup><mi>r</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><msub><mi mathvariant="normal">&#x2207;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>r</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow></mrow></mrow></msub><mo>&#x22C5;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>j</mi><mo>¯</mo></mover></mrow></mrow><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo stretchy="false">)</mo></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">|</mo></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>t</mi></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msub><mi>&#x03BC;</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>4</mn><mi>&#x03C0;</mi></mrow></mrow></mfrac></mrow><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><msup><mi>R</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover></mstyle><msup><mi>d</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup><mi>r</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x03C1;</mi><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo>,</mo><mi>t</mi><mo stretchy="false">)</mo></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">|</mo></mrow></mrow></mfrac></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msub><mi>&#x03BC;</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>4</mn><mi>&#x03C0;</mi></mrow></mrow></mfrac></mrow><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><msup><mi>R</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover></mstyle><msup><mi>d</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup><mi>r</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x03C1;</mi><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo>,</mo><mi>t</mi><mo stretchy="false">)</mo></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">|</mo></mrow></mrow></mfrac></mrow><mo>=</mo><msub><mi>&#x03BC;</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><msub><mi>&#x03B5;</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mi mathvariant="normal">&#x03A6;</mi><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>,</mo><mi>t</mi><mo stretchy="false">)</mo></mtd></mtr><mtr><mtd></mtd><mtd><mo>&#x21D2;</mo><mi mathvariant="normal">&#x2207;</mi><mo>&#x22C5;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>A</mi><mo>¯</mo></mover></mrow></mrow><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo stretchy="false">)</mo><mo>=</mo><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msub><mi>&#x03BC;</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>4</mn><mi>&#x03C0;</mi></mrow></mrow></mfrac></mrow><munder><mstyle displaystyle="true"><mo>&#x222E;</mo></mstyle><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>S</mi><mi mathvariant="normal">&#x221E;</mi></mrow></mrow></munder><msup><mi>d</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>f</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>j</mi><mo>¯</mo></mover></mrow></mrow><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo stretchy="false">)</mo></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">|</mo></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>&#x2212;</mo><msub><mi>&#x03BC;</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><msub><mi>&#x03B5;</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>t</mi></mrow></mrow></mfrac></mrow><mi mathvariant="normal">&#x03A6;</mi><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>,</mo><mi>t</mi><mo stretchy="false">)</mo></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Elektrodynamik Schöll page

Identifiers

  • A¯
  • r¯
  • μ0
  • π
  • R
  • r
  • ´
  • r
  • ´
  • j¯
  • r¯
  • ´
  • r¯
  • r¯
  • ´
  • t
  • μ0
  • π
  • R
  • r
  • ´
  • ρ
  • r¯
  • ´
  • t
  • r¯
  • r¯
  • ´
  • μ0
  • π
  • R
  • r
  • ´
  • ρ
  • r¯
  • ´
  • t
  • r¯
  • r¯
  • ´
  • μ0
  • ε0
  • Φ
  • r¯
  • t
  • A¯
  • r¯
  • μ0
  • π
  • S
  • d
  • f¯
  • ´
  • j¯
  • r¯
  • ´
  • r¯
  • r¯
  • ´
  • μ0
  • ε0
  • t
  • Φ
  • r¯
  • t

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results