Jump to navigation Jump to search

General

Display information for equation id:math.1198.284 on revision:1198

* Page found: Elektrodynamik Schöll (eq math.1198.284)

(force rerendering)

Occurrences on the following pages:

Hash: 0331bcc839d5ca4d4d8b332605430359

TeX (original user input):

\begin{align}
& \Rightarrow \delta W={{\varepsilon }_{0}}\sum\limits_{\alpha }^{{}}{{{\Phi }_{\alpha }}}\oint\limits_{S\alpha }{{}}d\bar{f}\delta \bar{E}(\bar{r})=\sum\limits_{\alpha }^{{}}{{{\Phi }_{\alpha }}}\delta \sum\limits_{\beta =1}^{n}{{}}{{C}_{\alpha \beta }}{{\Phi }_{\beta }}=\sum\limits_{\alpha ,\beta =1}^{n}{{}}{{\Phi }_{\alpha }}{{C}_{\alpha \beta }}\delta {{\Phi }_{\beta }} \\
& \sum\limits_{\alpha ,\beta =1}^{n}{{}}{{\Phi }_{\alpha }}{{C}_{\alpha \beta }}\delta {{\Phi }_{\beta }}=\frac{1}{2}\left\{ \sum\limits_{\alpha ,\beta =1}^{n}{{}}{{\Phi }_{\beta }}{{C}_{\beta \alpha }}\delta {{\Phi }_{\alpha }}+\sum\limits_{\alpha ,\beta =1}^{n}{{}}{{\Phi }_{\alpha }}{{C}_{\alpha \beta }}\delta {{\Phi }_{\beta }} \right\} \\
& {{C}_{\beta \alpha }}={{C}_{\alpha \beta }} \\
& \Rightarrow \delta W=\frac{1}{2}\sum\limits_{\alpha ,\beta =1}^{n}{{}}{{C}_{\alpha \beta }}\left\{ {{\Phi }_{\beta }}\delta {{\Phi }_{\alpha }}+{{\Phi }_{\alpha }}\delta {{\Phi }_{\beta }} \right\}=\delta \left\{ \frac{1}{2}\sum\limits_{\alpha ,\beta =1}^{n}{{}}{{C}_{\alpha \beta }}{{\Phi }_{\alpha }}{{\Phi }_{\beta }} \right\} \\
\end{align}

TeX (checked):

{\begin{aligned}&\Rightarrow \delta W={{\varepsilon }_{0}}\sum \limits _{\alpha }^{}{{\Phi }_{\alpha }}\oint \limits _{S\alpha }{}d{\bar {f}}\delta {\bar {E}}({\bar {r}})=\sum \limits _{\alpha }^{}{{\Phi }_{\alpha }}\delta \sum \limits _{\beta =1}^{n}{}{{C}_{\alpha \beta }}{{\Phi }_{\beta }}=\sum \limits _{\alpha ,\beta =1}^{n}{}{{\Phi }_{\alpha }}{{C}_{\alpha \beta }}\delta {{\Phi }_{\beta }}\\&\sum \limits _{\alpha ,\beta =1}^{n}{}{{\Phi }_{\alpha }}{{C}_{\alpha \beta }}\delta {{\Phi }_{\beta }}={\frac {1}{2}}\left\{\sum \limits _{\alpha ,\beta =1}^{n}{}{{\Phi }_{\beta }}{{C}_{\beta \alpha }}\delta {{\Phi }_{\alpha }}+\sum \limits _{\alpha ,\beta =1}^{n}{}{{\Phi }_{\alpha }}{{C}_{\alpha \beta }}\delta {{\Phi }_{\beta }}\right\}\\&{{C}_{\beta \alpha }}={{C}_{\alpha \beta }}\\&\Rightarrow \delta W={\frac {1}{2}}\sum \limits _{\alpha ,\beta =1}^{n}{}{{C}_{\alpha \beta }}\left\{{{\Phi }_{\beta }}\delta {{\Phi }_{\alpha }}+{{\Phi }_{\alpha }}\delta {{\Phi }_{\beta }}\right\}=\delta \left\{{\frac {1}{2}}\sum \limits _{\alpha ,\beta =1}^{n}{}{{C}_{\alpha \beta }}{{\Phi }_{\alpha }}{{\Phi }_{\beta }}\right\}\\\end{aligned}}

LaTeXML (experimental; uses MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimental; no images) rendering

MathML (7.17 KB / 685 B) :

δW=ε0αΦαSαdf¯δE¯(r¯)=αΦαδβ=1nCαβΦβ=α,β=1nΦαCαβδΦβα,β=1nΦαCαβδΦβ=12{α,β=1nΦβCβαδΦα+α,β=1nΦαCαβδΦβ}Cβα=CαβδW=12α,β=1nCαβ{ΦβδΦα+ΦαδΦβ}=δ{12α,β=1nCαβΦαΦβ}
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mo>&#x21D2;</mo><mi>&#x03B4;</mi><mi>W</mi><mo>=</mo><msub><mi>&#x03B5;</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><munderover><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mi>&#x03B1;</mi></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover><msub><mi mathvariant="normal">&#x03A6;</mi><mrow data-mjx-texclass="ORD"><mi>&#x03B1;</mi></mrow></msub><munder><mstyle displaystyle="true"><mo>&#x222E;</mo></mstyle><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>S</mi><mi>&#x03B1;</mi></mrow></mrow></munder><mi>d</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>f</mi><mo>¯</mo></mover></mrow></mrow><mi>&#x03B4;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>E</mi><mo>¯</mo></mover></mrow></mrow><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo stretchy="false">)</mo><mo>=</mo><munderover><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mi>&#x03B1;</mi></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover><msub><mi mathvariant="normal">&#x03A6;</mi><mrow data-mjx-texclass="ORD"><mi>&#x03B1;</mi></mrow></msub><mi>&#x03B4;</mi><munderover><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x03B2;</mi><mo>=</mo><mn>1</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></munderover><msub><mi>C</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x03B1;</mi><mi>&#x03B2;</mi></mrow></mrow></msub><msub><mi mathvariant="normal">&#x03A6;</mi><mrow data-mjx-texclass="ORD"><mi>&#x03B2;</mi></mrow></msub><mo>=</mo><munderover><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x03B1;</mi><mo>,</mo><mi>&#x03B2;</mi><mo>=</mo><mn>1</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></munderover><msub><mi mathvariant="normal">&#x03A6;</mi><mrow data-mjx-texclass="ORD"><mi>&#x03B1;</mi></mrow></msub><msub><mi>C</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x03B1;</mi><mi>&#x03B2;</mi></mrow></mrow></msub><mi>&#x03B4;</mi><msub><mi mathvariant="normal">&#x03A6;</mi><mrow data-mjx-texclass="ORD"><mi>&#x03B2;</mi></mrow></msub></mtd></mtr><mtr><mtd></mtd><mtd><munderover><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x03B1;</mi><mo>,</mo><mi>&#x03B2;</mi><mo>=</mo><mn>1</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></munderover><msub><mi mathvariant="normal">&#x03A6;</mi><mrow data-mjx-texclass="ORD"><mi>&#x03B1;</mi></mrow></msub><msub><mi>C</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x03B1;</mi><mi>&#x03B2;</mi></mrow></mrow></msub><mi>&#x03B4;</mi><msub><mi mathvariant="normal">&#x03A6;</mi><mrow data-mjx-texclass="ORD"><mi>&#x03B2;</mi></mrow></msub><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">{</mo><munderover><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x03B1;</mi><mo>,</mo><mi>&#x03B2;</mi><mo>=</mo><mn>1</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></munderover><msub><mi mathvariant="normal">&#x03A6;</mi><mrow data-mjx-texclass="ORD"><mi>&#x03B2;</mi></mrow></msub><msub><mi>C</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x03B2;</mi><mi>&#x03B1;</mi></mrow></mrow></msub><mi>&#x03B4;</mi><msub><mi mathvariant="normal">&#x03A6;</mi><mrow data-mjx-texclass="ORD"><mi>&#x03B1;</mi></mrow></msub><mo>+</mo><munderover><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x03B1;</mi><mo>,</mo><mi>&#x03B2;</mi><mo>=</mo><mn>1</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></munderover><msub><mi mathvariant="normal">&#x03A6;</mi><mrow data-mjx-texclass="ORD"><mi>&#x03B1;</mi></mrow></msub><msub><mi>C</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x03B1;</mi><mi>&#x03B2;</mi></mrow></mrow></msub><mi>&#x03B4;</mi><msub><mi mathvariant="normal">&#x03A6;</mi><mrow data-mjx-texclass="ORD"><mi>&#x03B2;</mi></mrow></msub><mo data-mjx-texclass="CLOSE">}</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><msub><mi>C</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x03B2;</mi><mi>&#x03B1;</mi></mrow></mrow></msub><mo>=</mo><msub><mi>C</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x03B1;</mi><mi>&#x03B2;</mi></mrow></mrow></msub></mtd></mtr><mtr><mtd></mtd><mtd><mo>&#x21D2;</mo><mi>&#x03B4;</mi><mi>W</mi><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow><munderover><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x03B1;</mi><mo>,</mo><mi>&#x03B2;</mi><mo>=</mo><mn>1</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></munderover><msub><mi>C</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x03B1;</mi><mi>&#x03B2;</mi></mrow></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">{</mo><msub><mi mathvariant="normal">&#x03A6;</mi><mrow data-mjx-texclass="ORD"><mi>&#x03B2;</mi></mrow></msub><mi>&#x03B4;</mi><msub><mi mathvariant="normal">&#x03A6;</mi><mrow data-mjx-texclass="ORD"><mi>&#x03B1;</mi></mrow></msub><mo>+</mo><msub><mi mathvariant="normal">&#x03A6;</mi><mrow data-mjx-texclass="ORD"><mi>&#x03B1;</mi></mrow></msub><mi>&#x03B4;</mi><msub><mi mathvariant="normal">&#x03A6;</mi><mrow data-mjx-texclass="ORD"><mi>&#x03B2;</mi></mrow></msub><mo data-mjx-texclass="CLOSE">}</mo></mrow><mo>=</mo><mi>&#x03B4;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">{</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow><munderover><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x03B1;</mi><mo>,</mo><mi>&#x03B2;</mi><mo>=</mo><mn>1</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></munderover><msub><mi>C</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x03B1;</mi><mi>&#x03B2;</mi></mrow></mrow></msub><msub><mi mathvariant="normal">&#x03A6;</mi><mrow data-mjx-texclass="ORD"><mi>&#x03B1;</mi></mrow></msub><msub><mi mathvariant="normal">&#x03A6;</mi><mrow data-mjx-texclass="ORD"><mi>&#x03B2;</mi></mrow></msub><mo data-mjx-texclass="CLOSE">}</mo></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Elektrodynamik Schöll page

Identifiers

  • δ
  • W
  • ε0
  • α
  • Φα
  • S
  • α
  • d
  • f¯
  • δ
  • E¯
  • r¯
  • α
  • Φα
  • δ
  • β
  • n
  • Cαβ
  • Φβ
  • α
  • β
  • n
  • Φα
  • Cαβ
  • δ
  • Φβ
  • α
  • β
  • n
  • Φα
  • Cαβ
  • δ
  • Φβ
  • α
  • β
  • n
  • Φβ
  • Cβα
  • δ
  • Φα
  • α
  • β
  • n
  • Φα
  • Cαβ
  • δ
  • Φβ
  • Cβα
  • Cαβ
  • δ
  • W
  • α
  • β
  • n
  • Cαβ
  • Φβ
  • δ
  • Φα
  • Φα
  • δ
  • Φβ
  • δ
  • α
  • β
  • n
  • Cαβ
  • Φα
  • Φβ

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results