Jump to navigation
		Jump to search
		
General
Display information for equation id:math.1198.255 on revision:1198
* Page found: Elektrodynamik Schöll (eq math.1198.255)
(force rerendering)Occurrences on the following pages:
Hash: 6a09fff77356ff8062fde296046c8ac6
TeX (original user input):
\begin{align}
& {{Q}_{\alpha }}=-{{\varepsilon }_{0}}\oint\limits_{S\alpha }{{}}d\bar{f}\cdot {{\nabla }_{r}}\int_{V}^{{}}{{{d}^{3}}r}G\left( \bar{r}-\bar{r}\acute{\ } \right)\rho \left( \bar{r}\acute{\ } \right)=-{{\varepsilon }_{0}}^{2}\oint\limits_{S\alpha }{{}}d\bar{f}\cdot {{\nabla }_{r}}\sum\limits_{\beta =1}^{n}{{{\Phi }_{\beta }}\oint\limits_{{{S}_{\beta }}}{{}}d\bar{f}\acute{\ }\cdot {{\nabla }_{r\acute{\ }}}}G\left( \bar{r}-\bar{r}\acute{\ } \right) \\
& {{Q}_{\alpha }}=-{{\varepsilon }_{0}}\int_{L\alpha }^{{}}{{}}{{d}^{3}}r\int_{V}^{{}}{{}}{{d}^{3}}r\acute{\ }{{\Delta }_{r}}G\left( \bar{r}-\bar{r}\acute{\ } \right)\rho \left( \bar{r}\acute{\ } \right)-\sum\limits_{\beta =1}^{n}{{{\Phi }_{\beta }}{{\varepsilon }_{0}}^{2}\oint\limits_{{{S}_{\alpha }}}{{}}d\bar{f}\cdot {{\nabla }_{r}}}\oint\limits_{{{S}_{\beta }}}{{}}d\bar{f}\acute{\ }\cdot {{\nabla }_{r\acute{\ }}}G\left( \bar{r}-\bar{r}\acute{\ } \right) \\
& {{\Delta }_{r}}G\left( \bar{r}-\bar{r}\acute{\ } \right)=-\frac{1}{{{\varepsilon }_{0}}}\delta \left( \bar{r}-\bar{r}\acute{\ } \right)=0\quad f\ddot{u}r\quad \bar{r}\in {{L}_{\alpha }},\bar{r}\acute{\ }\in V, \\
& {{\varepsilon }_{0}}^{2}\oint\limits_{{{S}_{\alpha }}}{{}}d\bar{f}\cdot {{\nabla }_{r}}\oint\limits_{{{S}_{\beta }}}{{}}d\bar{f}\acute{\ }\cdot {{\nabla }_{r\acute{\ }}}G\left( \bar{r}-\bar{r}\acute{\ } \right)=:-{{C}_{\alpha \beta }} \\
& \Rightarrow {{Q}_{\alpha }}=-\sum\limits_{\beta =1}^{n}{{{\Phi }_{\beta }}{{\varepsilon }_{0}}^{2}\oint\limits_{{{S}_{\alpha }}}{{}}d\bar{f}\cdot {{\nabla }_{r}}}\oint\limits_{{{S}_{\beta }}}{{}}d\bar{f}\acute{\ }\cdot {{\nabla }_{r\acute{\ }}}G\left( \bar{r}-\bar{r}\acute{\ } \right)=\sum\limits_{\beta =1}^{n}{{{C}_{\alpha \beta }}{{\Phi }_{\beta }}} \\
\end{align}
TeX (checked):
{\begin{aligned}&{{Q}_{\alpha }}=-{{\varepsilon }_{0}}\oint \limits _{S\alpha }{}d{\bar {f}}\cdot {{\nabla }_{r}}\int _{V}^{}{{{d}^{3}}r}G\left({\bar {r}}-{\bar {r}}{\acute {\ }}\right)\rho \left({\bar {r}}{\acute {\ }}\right)=-{{\varepsilon }_{0}}^{2}\oint \limits _{S\alpha }{}d{\bar {f}}\cdot {{\nabla }_{r}}\sum \limits _{\beta =1}^{n}{{{\Phi }_{\beta }}\oint \limits _{{S}_{\beta }}{}d{\bar {f}}{\acute {\ }}\cdot {{\nabla }_{r{\acute {\ }}}}}G\left({\bar {r}}-{\bar {r}}{\acute {\ }}\right)\\&{{Q}_{\alpha }}=-{{\varepsilon }_{0}}\int _{L\alpha }^{}{}{{d}^{3}}r\int _{V}^{}{}{{d}^{3}}r{\acute {\ }}{{\Delta }_{r}}G\left({\bar {r}}-{\bar {r}}{\acute {\ }}\right)\rho \left({\bar {r}}{\acute {\ }}\right)-\sum \limits _{\beta =1}^{n}{{{\Phi }_{\beta }}{{\varepsilon }_{0}}^{2}\oint \limits _{{S}_{\alpha }}{}d{\bar {f}}\cdot {{\nabla }_{r}}}\oint \limits _{{S}_{\beta }}{}d{\bar {f}}{\acute {\ }}\cdot {{\nabla }_{r{\acute {\ }}}}G\left({\bar {r}}-{\bar {r}}{\acute {\ }}\right)\\&{{\Delta }_{r}}G\left({\bar {r}}-{\bar {r}}{\acute {\ }}\right)=-{\frac {1}{{\varepsilon }_{0}}}\delta \left({\bar {r}}-{\bar {r}}{\acute {\ }}\right)=0\quad f{\ddot {u}}r\quad {\bar {r}}\in {{L}_{\alpha }},{\bar {r}}{\acute {\ }}\in V,\\&{{\varepsilon }_{0}}^{2}\oint \limits _{{S}_{\alpha }}{}d{\bar {f}}\cdot {{\nabla }_{r}}\oint \limits _{{S}_{\beta }}{}d{\bar {f}}{\acute {\ }}\cdot {{\nabla }_{r{\acute {\ }}}}G\left({\bar {r}}-{\bar {r}}{\acute {\ }}\right)=:-{{C}_{\alpha \beta }}\\&\Rightarrow {{Q}_{\alpha }}=-\sum \limits _{\beta =1}^{n}{{{\Phi }_{\beta }}{{\varepsilon }_{0}}^{2}\oint \limits _{{S}_{\alpha }}{}d{\bar {f}}\cdot {{\nabla }_{r}}}\oint \limits _{{S}_{\beta }}{}d{\bar {f}}{\acute {\ }}\cdot {{\nabla }_{r{\acute {\ }}}}G\left({\bar {r}}-{\bar {r}}{\acute {\ }}\right)=\sum \limits _{\beta =1}^{n}{{{C}_{\alpha \beta }}{{\Phi }_{\beta }}}\\\end{aligned}}
LaTeXML (experimental; uses MathML) rendering
SVG image empty. Force Re-Rendering
SVG (0 B / 8 B) :
MathML (experimental; no images) rendering
MathML (15.28 KB / 912 B) :

<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><msub><mi>Q</mi><mrow data-mjx-texclass="ORD"><mi>α</mi></mrow></msub><mo>=</mo><mo>−</mo><msub><mi>ε</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><munder><mstyle displaystyle="true"><mo>∮</mo></mstyle><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>S</mi><mi>α</mi></mrow></mrow></munder><mi>d</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>f</mi><mo>¯</mo></mover></mrow></mrow><mo>⋅</mo><msub><mi mathvariant="normal">∇</mi><mrow data-mjx-texclass="ORD"><mi>r</mi></mrow></msub><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">∫</mo><mrow data-mjx-texclass="ORD"><mi>V</mi></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover></mstyle><mrow data-mjx-texclass="ORD"><msup><mi>d</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup><mi>r</mi></mrow><mi>G</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>−</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mi>ρ</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mo>−</mo><msup><msub><mi>ε</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><munder><mstyle displaystyle="true"><mo>∮</mo></mstyle><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>S</mi><mi>α</mi></mrow></mrow></munder><mi>d</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>f</mi><mo>¯</mo></mover></mrow></mrow><mo>⋅</mo><msub><mi mathvariant="normal">∇</mi><mrow data-mjx-texclass="ORD"><mi>r</mi></mrow></msub><munderover><mo form="prefix" texclass="OP">∑</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>β</mi><mo>=</mo><mn>1</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></munderover><mrow data-mjx-texclass="ORD"><msub><mi mathvariant="normal">Φ</mi><mrow data-mjx-texclass="ORD"><mi>β</mi></mrow></msub><munder><mstyle displaystyle="true"><mo>∮</mo></mstyle><mrow data-mjx-texclass="ORD"><msub><mi>S</mi><mrow data-mjx-texclass="ORD"><mi>β</mi></mrow></msub></mrow></munder><mi>d</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>f</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo>⋅</mo><msub><mi mathvariant="normal">∇</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>r</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow></mrow></mrow></msub></mrow><mi>G</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>−</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><msub><mi>Q</mi><mrow data-mjx-texclass="ORD"><mi>α</mi></mrow></msub><mo>=</mo><mo>−</mo><msub><mi>ε</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">∫</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>L</mi><mi>α</mi></mrow></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover></mstyle><msup><mi>d</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup><mi>r</mi><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">∫</mo><mrow data-mjx-texclass="ORD"><mi>V</mi></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover></mstyle><msup><mi>d</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup><mi>r</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><msub><mi mathvariant="normal">Δ</mi><mrow data-mjx-texclass="ORD"><mi>r</mi></mrow></msub><mi>G</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>−</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mi>ρ</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>−</mo><munderover><mo form="prefix" texclass="OP">∑</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>β</mi><mo>=</mo><mn>1</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></munderover><mrow data-mjx-texclass="ORD"><msub><mi mathvariant="normal">Φ</mi><mrow data-mjx-texclass="ORD"><mi>β</mi></mrow></msub><msup><msub><mi>ε</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><munder><mstyle displaystyle="true"><mo>∮</mo></mstyle><mrow data-mjx-texclass="ORD"><msub><mi>S</mi><mrow data-mjx-texclass="ORD"><mi>α</mi></mrow></msub></mrow></munder><mi>d</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>f</mi><mo>¯</mo></mover></mrow></mrow><mo>⋅</mo><msub><mi mathvariant="normal">∇</mi><mrow data-mjx-texclass="ORD"><mi>r</mi></mrow></msub></mrow><munder><mstyle displaystyle="true"><mo>∮</mo></mstyle><mrow data-mjx-texclass="ORD"><msub><mi>S</mi><mrow data-mjx-texclass="ORD"><mi>β</mi></mrow></msub></mrow></munder><mi>d</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>f</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo>⋅</mo><msub><mi mathvariant="normal">∇</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>r</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow></mrow></mrow></msub><mi>G</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>−</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><msub><mi mathvariant="normal">Δ</mi><mrow data-mjx-texclass="ORD"><mi>r</mi></mrow></msub><mi>G</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>−</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mo>−</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><msub><mi>ε</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mrow></mfrac></mrow><mi>δ</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>−</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mn>0</mn><mspace width="1em"></mspace><mi>f</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>u</mi><mo>¨</mo></mover></mrow></mrow><mi>r</mi><mspace width="1em"></mspace><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>∈</mo><msub><mi>L</mi><mrow data-mjx-texclass="ORD"><mi>α</mi></mrow></msub><mo>,</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo>∈</mo><mi>V</mi><mo>,</mo></mtd></mtr><mtr><mtd></mtd><mtd><msup><msub><mi>ε</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><munder><mstyle displaystyle="true"><mo>∮</mo></mstyle><mrow data-mjx-texclass="ORD"><msub><mi>S</mi><mrow data-mjx-texclass="ORD"><mi>α</mi></mrow></msub></mrow></munder><mi>d</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>f</mi><mo>¯</mo></mover></mrow></mrow><mo>⋅</mo><msub><mi mathvariant="normal">∇</mi><mrow data-mjx-texclass="ORD"><mi>r</mi></mrow></msub><munder><mstyle displaystyle="true"><mo>∮</mo></mstyle><mrow data-mjx-texclass="ORD"><msub><mi>S</mi><mrow data-mjx-texclass="ORD"><mi>β</mi></mrow></msub></mrow></munder><mi>d</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>f</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo>⋅</mo><msub><mi mathvariant="normal">∇</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>r</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow></mrow></mrow></msub><mi>G</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>−</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mi>:</mi><mo>−</mo><msub><mi>C</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>α</mi><mi>β</mi></mrow></mrow></msub></mtd></mtr><mtr><mtd></mtd><mtd><mo>⇒</mo><msub><mi>Q</mi><mrow data-mjx-texclass="ORD"><mi>α</mi></mrow></msub><mo>=</mo><mo>−</mo><munderover><mo form="prefix" texclass="OP">∑</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>β</mi><mo>=</mo><mn>1</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></munderover><mrow data-mjx-texclass="ORD"><msub><mi mathvariant="normal">Φ</mi><mrow data-mjx-texclass="ORD"><mi>β</mi></mrow></msub><msup><msub><mi>ε</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><munder><mstyle displaystyle="true"><mo>∮</mo></mstyle><mrow data-mjx-texclass="ORD"><msub><mi>S</mi><mrow data-mjx-texclass="ORD"><mi>α</mi></mrow></msub></mrow></munder><mi>d</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>f</mi><mo>¯</mo></mover></mrow></mrow><mo>⋅</mo><msub><mi mathvariant="normal">∇</mi><mrow data-mjx-texclass="ORD"><mi>r</mi></mrow></msub></mrow><munder><mstyle displaystyle="true"><mo>∮</mo></mstyle><mrow data-mjx-texclass="ORD"><msub><mi>S</mi><mrow data-mjx-texclass="ORD"><mi>β</mi></mrow></msub></mrow></munder><mi>d</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>f</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo>⋅</mo><msub><mi mathvariant="normal">∇</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>r</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow></mrow></mrow></msub><mi>G</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>−</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><munderover><mo form="prefix" texclass="OP">∑</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>β</mi><mo>=</mo><mn>1</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></munderover><mrow data-mjx-texclass="ORD"><msub><mi>C</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>α</mi><mi>β</mi></mrow></mrow></msub><msub><mi mathvariant="normal">Φ</mi><mrow data-mjx-texclass="ORD"><mi>β</mi></mrow></msub></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>
Translations to Computer Algebra Systems
Translation to Maple
In Maple: 
Translation to Mathematica
In Mathematica: 
Similar pages
Calculated based on the variables occurring on the entire Elektrodynamik Schöll page
Identifiers
MathML observations
0results
0results
no statistics present please run the maintenance script ExtractFeatures.php
0 results
0 results