Jump to navigation
Jump to search
General
Display information for equation id:math.1198.236 on revision:1198
* Page found: Elektrodynamik Schöll (eq math.1198.236)
(force rerendering)Occurrences on the following pages:
Hash: b4e3c54f0ed964d3b728fe98dcdd7e13
TeX (original user input):
\begin{align}
& \Phi (\bar{r}\acute{\ }){{\left. {} \right|}_{\bar{r}\acute{\ }\in S\beta }}=\int_{V}^{{}}{{{d}^{3}}r}G\left( \bar{r}-\bar{r}\acute{\ } \right){{\left. {} \right|}_{\bar{r}\acute{\ }\in S\beta }}\rho \left( {\bar{r}} \right)+{{\varepsilon }_{0}}\sum\limits_{\alpha =1}^{n}{{{\Phi }_{\alpha }}\oint\limits_{S\alpha }{{}}d\bar{f}\cdot {{\nabla }_{r}}}G\left( \bar{r}-\bar{r}\acute{\ } \right){{\left. {} \right|}_{\bar{r}\acute{\ }\in S\beta }} \\
& G\left( \bar{r}-\bar{r}\acute{\ } \right){{\left. {} \right|}_{\bar{r}\acute{\ }\in S\beta }}\rho \left( {\bar{r}} \right)=0 \\
& \Rightarrow \Phi (\bar{r}\acute{\ }){{\left. {} \right|}_{\bar{r}\acute{\ }\in S\beta }}={{\varepsilon }_{0}}\sum\limits_{\alpha =1}^{n}{{{\Phi }_{\alpha }}\oint\limits_{S\alpha }{{}}d\bar{f}\cdot {{\nabla }_{r}}}G\left( \bar{r}-\bar{r}\acute{\ } \right){{\left. {} \right|}_{\bar{r}\acute{\ }\in S\beta }}=-{{\varepsilon }_{0}}\int_{\partial V}^{{}}{{}}d\bar{f}\cdot \Phi (\bar{r}){{\nabla }_{r}}G\left( \bar{r}-\bar{r}\acute{\ } \right){{\left. {} \right|}_{\bar{r}\acute{\ }\in S\beta }} \\
\end{align}
TeX (checked):
{\begin{aligned}&\Phi ({\bar {r}}{\acute {\ }}){{\left.{}\right|}_{{\bar {r}}{\acute {\ }}\in S\beta }}=\int _{V}^{}{{{d}^{3}}r}G\left({\bar {r}}-{\bar {r}}{\acute {\ }}\right){{\left.{}\right|}_{{\bar {r}}{\acute {\ }}\in S\beta }}\rho \left({\bar {r}}\right)+{{\varepsilon }_{0}}\sum \limits _{\alpha =1}^{n}{{{\Phi }_{\alpha }}\oint \limits _{S\alpha }{}d{\bar {f}}\cdot {{\nabla }_{r}}}G\left({\bar {r}}-{\bar {r}}{\acute {\ }}\right){{\left.{}\right|}_{{\bar {r}}{\acute {\ }}\in S\beta }}\\&G\left({\bar {r}}-{\bar {r}}{\acute {\ }}\right){{\left.{}\right|}_{{\bar {r}}{\acute {\ }}\in S\beta }}\rho \left({\bar {r}}\right)=0\\&\Rightarrow \Phi ({\bar {r}}{\acute {\ }}){{\left.{}\right|}_{{\bar {r}}{\acute {\ }}\in S\beta }}={{\varepsilon }_{0}}\sum \limits _{\alpha =1}^{n}{{{\Phi }_{\alpha }}\oint \limits _{S\alpha }{}d{\bar {f}}\cdot {{\nabla }_{r}}}G\left({\bar {r}}-{\bar {r}}{\acute {\ }}\right){{\left.{}\right|}_{{\bar {r}}{\acute {\ }}\in S\beta }}=-{{\varepsilon }_{0}}\int _{\partial V}^{}{}d{\bar {f}}\cdot \Phi ({\bar {r}}){{\nabla }_{r}}G\left({\bar {r}}-{\bar {r}}{\acute {\ }}\right){{\left.{}\right|}_{{\bar {r}}{\acute {\ }}\in S\beta }}\\\end{aligned}}
LaTeXML (experimental; uses MathML) rendering
SVG image empty. Force Re-Rendering
SVG (0 B / 8 B) :
MathML (experimental; no images) rendering
MathML (10.388 KB / 772 B) :
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mi mathvariant="normal">Φ</mi><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo stretchy="false">)</mo><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN"></mo><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo>∈</mo><mi>S</mi><mi>β</mi></mrow></mrow></msub><mo>=</mo><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">∫</mo><mrow data-mjx-texclass="ORD"><mi>V</mi></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover></mstyle><mrow data-mjx-texclass="ORD"><msup><mi>d</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup><mi>r</mi></mrow><mi>G</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>−</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN"></mo><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo>∈</mo><mi>S</mi><mi>β</mi></mrow></mrow></msub><mi>ρ</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>+</mo><msub><mi>ε</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><munderover><mo form="prefix" texclass="OP">∑</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>α</mi><mo>=</mo><mn>1</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></munderover><mrow data-mjx-texclass="ORD"><msub><mi mathvariant="normal">Φ</mi><mrow data-mjx-texclass="ORD"><mi>α</mi></mrow></msub><munder><mstyle displaystyle="true"><mo>∮</mo></mstyle><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>S</mi><mi>α</mi></mrow></mrow></munder><mi>d</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>f</mi><mo>¯</mo></mover></mrow></mrow><mo>⋅</mo><msub><mi mathvariant="normal">∇</mi><mrow data-mjx-texclass="ORD"><mi>r</mi></mrow></msub></mrow><mi>G</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>−</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN"></mo><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo>∈</mo><mi>S</mi><mi>β</mi></mrow></mrow></msub></mtd></mtr><mtr><mtd></mtd><mtd><mi>G</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>−</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN"></mo><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo>∈</mo><mi>S</mi><mi>β</mi></mrow></mrow></msub><mi>ρ</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mn>0</mn></mtd></mtr><mtr><mtd></mtd><mtd><mo>⇒</mo><mi mathvariant="normal">Φ</mi><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo stretchy="false">)</mo><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN"></mo><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo>∈</mo><mi>S</mi><mi>β</mi></mrow></mrow></msub><mo>=</mo><msub><mi>ε</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><munderover><mo form="prefix" texclass="OP">∑</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>α</mi><mo>=</mo><mn>1</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></munderover><mrow data-mjx-texclass="ORD"><msub><mi mathvariant="normal">Φ</mi><mrow data-mjx-texclass="ORD"><mi>α</mi></mrow></msub><munder><mstyle displaystyle="true"><mo>∮</mo></mstyle><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>S</mi><mi>α</mi></mrow></mrow></munder><mi>d</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>f</mi><mo>¯</mo></mover></mrow></mrow><mo>⋅</mo><msub><mi mathvariant="normal">∇</mi><mrow data-mjx-texclass="ORD"><mi>r</mi></mrow></msub></mrow><mi>G</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>−</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN"></mo><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo>∈</mo><mi>S</mi><mi>β</mi></mrow></mrow></msub><mo>=</mo><mo>−</mo><msub><mi>ε</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">∫</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><mi>V</mi></mrow></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover></mstyle><mi>d</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>f</mi><mo>¯</mo></mover></mrow></mrow><mo>⋅</mo><mi mathvariant="normal">Φ</mi><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo stretchy="false">)</mo><msub><mi mathvariant="normal">∇</mi><mrow data-mjx-texclass="ORD"><mi>r</mi></mrow></msub><mi>G</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>−</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN"></mo><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo>∈</mo><mi>S</mi><mi>β</mi></mrow></mrow></msub></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>
Translations to Computer Algebra Systems
Translation to Maple
In Maple:
Translation to Mathematica
In Mathematica:
Similar pages
Calculated based on the variables occurring on the entire Elektrodynamik Schöll page
Identifiers
MathML observations
0results
0results
no statistics present please run the maintenance script ExtractFeatures.php
0 results
0 results