Jump to navigation Jump to search

General

Display information for equation id:math.1109.54 on revision:1109

* Page found: ART-Skript (eq math.1109.54)

(force rerendering)

Occurrences on the following pages:

Hash: 4d31c4427f078098e25d4ffa107cf14a

TeX (original user input):

\left( \frac{\partial {{v}^{\beta }}}{\partial {{x}^{\alpha }}} \right)'={{v}^{\beta }}_{,\alpha }'=\frac{\partial v{{'}^{\beta }}}{\partial x{{'}^{\alpha }}}=\frac{\partial }{\partial x{{'}^{\alpha }}}\left( \Lambda _{\sigma }^{\beta }{{v}^{\sigma }} \right)=\Lambda _{\sigma }^{\beta }\frac{\partial {{v}^{\sigma }}}{\partial x{{'}^{\alpha }}}=\Lambda _{\sigma }^{\beta }\frac{\partial {{v}^{\sigma }}}{\partial {{x}^{\rho }}}\frac{\partial {{x}^{\rho }}}{\partial x{{'}^{\alpha }}}=\Lambda _{\sigma }^{\beta }\bar{\Lambda }_{\alpha }^{\rho }\frac{\partial {{v}^{\sigma }}}{\partial {{x}^{\rho }}}

TeX (checked):

\left({\frac {\partial {{v}^{\beta }}}{\partial {{x}^{\alpha }}}}\right)'={{v}^{\beta }}_{,\alpha }'={\frac {\partial v{{'}^{\beta }}}{\partial x{{'}^{\alpha }}}}={\frac {\partial }{\partial x{{'}^{\alpha }}}}\left(\Lambda _{\sigma }^{\beta }{{v}^{\sigma }}\right)=\Lambda _{\sigma }^{\beta }{\frac {\partial {{v}^{\sigma }}}{\partial x{{'}^{\alpha }}}}=\Lambda _{\sigma }^{\beta }{\frac {\partial {{v}^{\sigma }}}{\partial {{x}^{\rho }}}}{\frac {\partial {{x}^{\rho }}}{\partial x{{'}^{\alpha }}}}=\Lambda _{\sigma }^{\beta }{\bar {\Lambda }}_{\alpha }^{\rho }{\frac {\partial {{v}^{\sigma }}}{\partial {{x}^{\rho }}}}

LaTeXML (experimental; uses MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimental; no images) rendering

MathML (4.313 KB / 433 B) :

(vβxα)=vβ,α=v'βx'α=x'α(Λσβvσ)=Λσβvσx'α=Λσβvσxρxρx'α=ΛσβΛ¯αρvσxρ
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msup><mi>v</mi><mrow data-mjx-texclass="ORD"><mi>&#x03B2;</mi></mrow></msup></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msup><mi>x</mi><mrow data-mjx-texclass="ORD"><mi>&#x03B1;</mi></mrow></msup></mrow></mrow></mfrac></mrow><mo>&#x2032;</mo></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>&#x2032;</mo></msup><mo>=</mo><msup><msub><msup><mi>v</mi><mrow data-mjx-texclass="ORD"><mi>&#x03B2;</mi></mrow></msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msup><mo>,</mo><mo>&#x2032;</mo></msup><mi>&#x03B1;</mi></mrow></mrow></msub><mo>&#x2032;</mo></msup><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>v</mi><msup><mi>'</mi><mrow data-mjx-texclass="ORD"><mi>&#x03B2;</mi></mrow></msup></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>x</mi><msup><mi>'</mi><mrow data-mjx-texclass="ORD"><mi>&#x03B1;</mi></mrow></msup></mrow></mrow></mfrac></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>x</mi><msup><mi>'</mi><mrow data-mjx-texclass="ORD"><mi>&#x03B1;</mi></mrow></msup></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msubsup><mi mathvariant="normal">&#x039B;</mi><mrow data-mjx-texclass="ORD"><mi>&#x03C3;</mi></mrow><mrow data-mjx-texclass="ORD"><mi>&#x03B2;</mi></mrow></msubsup><msup><mi>v</mi><mrow data-mjx-texclass="ORD"><mi>&#x03C3;</mi></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><msubsup><mi mathvariant="normal">&#x039B;</mi><mrow data-mjx-texclass="ORD"><mi>&#x03C3;</mi></mrow><mrow data-mjx-texclass="ORD"><mi>&#x03B2;</mi></mrow></msubsup><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msup><mi>v</mi><mrow data-mjx-texclass="ORD"><mi>&#x03C3;</mi></mrow></msup></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>x</mi><msup><mi>'</mi><mrow data-mjx-texclass="ORD"><mi>&#x03B1;</mi></mrow></msup></mrow></mrow></mfrac></mrow><mo>=</mo><msubsup><mi mathvariant="normal">&#x039B;</mi><mrow data-mjx-texclass="ORD"><mi>&#x03C3;</mi></mrow><mrow data-mjx-texclass="ORD"><mi>&#x03B2;</mi></mrow></msubsup><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msup><mi>v</mi><mrow data-mjx-texclass="ORD"><mi>&#x03C3;</mi></mrow></msup></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msup><mi>x</mi><mrow data-mjx-texclass="ORD"><mi>&#x03C1;</mi></mrow></msup></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msup><mi>x</mi><mrow data-mjx-texclass="ORD"><mi>&#x03C1;</mi></mrow></msup></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>x</mi><msup><mi>'</mi><mrow data-mjx-texclass="ORD"><mi>&#x03B1;</mi></mrow></msup></mrow></mrow></mfrac></mrow><mo>=</mo><msubsup><mi mathvariant="normal">&#x039B;</mi><mrow data-mjx-texclass="ORD"><mi>&#x03C3;</mi></mrow><mrow data-mjx-texclass="ORD"><mi>&#x03B2;</mi></mrow></msubsup><msubsup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi mathvariant="normal">&#x039B;</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>&#x03B1;</mi></mrow><mrow data-mjx-texclass="ORD"><mi>&#x03C1;</mi></mrow></msubsup><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msup><mi>v</mi><mrow data-mjx-texclass="ORD"><mi>&#x03C3;</mi></mrow></msup></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msup><mi>x</mi><mrow data-mjx-texclass="ORD"><mi>&#x03C1;</mi></mrow></msup></mrow></mrow></mfrac></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire ART-Skript page

Identifiers

  • v
  • β
  • x
  • α
  • v
  • β
  • α
  • v
  • β
  • x
  • α
  • x
  • α
  • Λ
  • σ
  • β
  • v
  • σ
  • Λ
  • σ
  • β
  • v
  • σ
  • x
  • α
  • Λ
  • σ
  • β
  • v
  • σ
  • x
  • ρ
  • x
  • ρ
  • x
  • α
  • Λ
  • σ
  • β
  • Λ¯
  • α
  • ρ
  • v
  • σ
  • x
  • ρ

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results