Jump to navigation Jump to search

General

Display information for equation id:math.1109.419 on revision:1109

* Page found: ART-Skript (eq math.1109.419)

(force rerendering)

Occurrences on the following pages:

Hash: d2f9e1a369f9cb6f6dec4338bf3fef52

TeX (original user input):

\begin{align}
  & {{T}^{\alpha }}{{_{\mathrm{;}}}_{\alpha }}=\frac{1}{\sqrt{-g}}{{\left( \sqrt{-g}{{T}^{\alpha }} \right)}_{\mathrm{,}}}_{\alpha } \\ 
 & \Rightarrow \int\limits_{{{V}_{4}}}{{{\left( \sqrt{-g}{{T}^{\alpha }} \right)}_{\mathrm{,}}}_{\alpha }{{d}^{4}}x}=\int\limits_{\partial {{V}_{4}}}{\left( \sqrt{-g}{{T}^{\alpha }} \right)d{{f}_{\alpha }}} \\ 
 & \left( {{T}^{\alpha }}:={{\xi }_{\beta }}{{T}^{\alpha }}^{\beta } \right) \\ 
\end{align}

TeX (checked):

{\begin{aligned}&{{T}^{\alpha }}{{_{\mathrm {;} }}_{\alpha }}={\frac {1}{\sqrt {-g}}}{{\left({\sqrt {-g}}{{T}^{\alpha }}\right)}_{\mathrm {,} }}_{\alpha }\\&\Rightarrow \int \limits _{{V}_{4}}{{{\left({\sqrt {-g}}{{T}^{\alpha }}\right)}_{\mathrm {,} }}_{\alpha }{{d}^{4}}x}=\int \limits _{\partial {{V}_{4}}}{\left({\sqrt {-g}}{{T}^{\alpha }}\right)d{{f}_{\alpha }}}\\&\left({{T}^{\alpha }}:={{\xi }_{\beta }}{{T}^{\alpha }}^{\beta }\right)\\\end{aligned}}

LaTeXML (experimental; uses MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimental; no images) rendering

MathML (3.279 KB / 511 B) :

Tα;α=1g(gTα),αV4(gTα),αd4x=V4(gTα)dfα(Tα:=ξβTαβ)
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><msup><mi>T</mi><mrow data-mjx-texclass="ORD"><mi>&#x03B1;</mi></mrow></msup><msub><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>;</mo></mrow></mrow></msub><mrow data-mjx-texclass="ORD"><mi>&#x03B1;</mi></mrow></msub><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msqrt><mrow data-mjx-texclass="ORD"><mo>&#x2212;</mo><mi>g</mi></mrow></msqrt></mrow></mrow></mfrac></mrow><msub><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><msqrt><mrow data-mjx-texclass="ORD"><mo>&#x2212;</mo><mi>g</mi></mrow></msqrt></mrow><msup><mi>T</mi><mrow data-mjx-texclass="ORD"><mi>&#x03B1;</mi></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>,</mo></mrow></mrow></msub><mrow data-mjx-texclass="ORD"><mi>&#x03B1;</mi></mrow></msub></mtd></mtr><mtr><mtd></mtd><mtd><mo>&#x21D2;</mo><munder><mo form="prefix" texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><msub><mi>V</mi><mrow data-mjx-texclass="ORD"><mn>4</mn></mrow></msub></mrow></munder><mrow data-mjx-texclass="ORD"><msub><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><msqrt><mrow data-mjx-texclass="ORD"><mo>&#x2212;</mo><mi>g</mi></mrow></msqrt></mrow><msup><mi>T</mi><mrow data-mjx-texclass="ORD"><mi>&#x03B1;</mi></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>,</mo></mrow></mrow></msub><mrow data-mjx-texclass="ORD"><mi>&#x03B1;</mi></mrow></msub><msup><mi>d</mi><mrow data-mjx-texclass="ORD"><mn>4</mn></mrow></msup><mi>x</mi></mrow><mo>=</mo><munder><mo form="prefix" texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>V</mi><mrow data-mjx-texclass="ORD"><mn>4</mn></mrow></msub></mrow></mrow></munder><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><msqrt><mrow data-mjx-texclass="ORD"><mo>&#x2212;</mo><mi>g</mi></mrow></msqrt></mrow><msup><mi>T</mi><mrow data-mjx-texclass="ORD"><mi>&#x03B1;</mi></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow><mi>d</mi><msub><mi>f</mi><mrow data-mjx-texclass="ORD"><mi>&#x03B1;</mi></mrow></msub></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mi>T</mi><mrow data-mjx-texclass="ORD"><mi>&#x03B1;</mi></mrow></msup><mi>:</mi><mo>=</mo><msub><mi>&#x03BE;</mi><mrow data-mjx-texclass="ORD"><mi>&#x03B2;</mi></mrow></msub><msup><msup><mi>T</mi><mrow data-mjx-texclass="ORD"><mi>&#x03B1;</mi></mrow></msup><mrow data-mjx-texclass="ORD"><mi>&#x03B2;</mi></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire ART-Skript page

Identifiers

  • T
  • α
  • α
  • g
  • g
  • T
  • α
  • α
  • V4
  • g
  • T
  • α
  • α
  • x
  • V4
  • g
  • T
  • α
  • fα
  • T
  • α
  • ξβ
  • T
  • α
  • β

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results