Jump to navigation Jump to search

General

Display information for equation id:math.1107.223 on revision:1107

* Page found: ART-Skript (eq math.1107.223)

(force rerendering)

Occurrences on the following pages:

Hash: 3bf001a2b884833f519d9608197e9f8d

TeX (original user input):

\left. \begin{align}
  & {{F}^{\mu \nu }}_{,\nu }=\frac{4\pi }{c}{{j}^{\mu }} \\ 
 & {{\varepsilon }^{\nu \mu \alpha \beta }}{{F}_{\alpha \beta ,\mu }}=0  
\end{align} \right\}\to \left\{ \begin{align}
  & {{F}^{\mu \nu }}_{;\nu }=\frac{4\pi }{c}{{j}^{\mu }} \\ 
 & \frac{1}{\sqrt{-g}}{{\varepsilon }^{\nu \mu \alpha \beta }}{{F}_{\alpha \beta ;\mu }}=0  
\end{align} \right.\Leftrightarrow \left\{ \begin{align}
  & \frac{1}{\sqrt{-g}}{{\left( \sqrt{-g}{{F}^{\mu \nu }} \right)}_{,\nu }}=\frac{4\pi }{c}{{j}^{\mu }} \\ 
 & {{\varepsilon }^{\nu \mu \alpha \beta }}{{F}_{\alpha \beta ,\mu }}=0  
\end{align} \right.

TeX (checked):

\left.{\begin{aligned}&{{F}^{\mu \nu }}_{,\nu }={\frac {4\pi }{c}}{{j}^{\mu }}\\&{{\varepsilon }^{\nu \mu \alpha \beta }}{{F}_{\alpha \beta ,\mu }}=0\end{aligned}}\right\}\to \left\{{\begin{aligned}&{{F}^{\mu \nu }}_{;\nu }={\frac {4\pi }{c}}{{j}^{\mu }}\\&{\frac {1}{\sqrt {-g}}}{{\varepsilon }^{\nu \mu \alpha \beta }}{{F}_{\alpha \beta ;\mu }}=0\end{aligned}}\right.\Leftrightarrow \left\{{\begin{aligned}&{\frac {1}{\sqrt {-g}}}{{\left({\sqrt {-g}}{{F}^{\mu \nu }}\right)}_{,\nu }}={\frac {4\pi }{c}}{{j}^{\mu }}\\&{{\varepsilon }^{\nu \mu \alpha \beta }}{{F}_{\alpha \beta ,\mu }}=0\end{aligned}}\right.

LaTeXML (experimental; uses MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimental; no images) rendering

MathML (4.791 KB / 554 B) :

Fμν,ν=4πcjμενμαβFαβ,μ=0}{Fμν;ν=4πcjμ1gενμαβFαβ;μ=0{1g(gFμν),ν=4πcjμενμαβFαβ,μ=0
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN"></mo><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><msub><msup><mi>F</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x03BC;</mi><mi>&#x03BD;</mi></mrow></mrow></msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>,</mo><mi>&#x03BD;</mi></mrow></mrow></msub><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>4</mn><mi>&#x03C0;</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>c</mi></mrow></mfrac></mrow><msup><mi>j</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BC;</mi></mrow></msup></mtd></mtr><mtr><mtd></mtd><mtd><msup><mi>&#x03B5;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x03BD;</mi><mi>&#x03BC;</mi><mi>&#x03B1;</mi><mi>&#x03B2;</mi></mrow></mrow></msup><msub><mi>F</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x03B1;</mi><mi>&#x03B2;</mi><mo>,</mo><mi>&#x03BC;</mi></mrow></mrow></msub><mo>=</mo><mn>0</mn></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">}</mo></mrow><mo accent="false">&#x2192;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">{</mo><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><msub><msup><mi>F</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x03BC;</mi><mi>&#x03BD;</mi></mrow></mrow></msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>;</mo><mi>&#x03BD;</mi></mrow></mrow></msub><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>4</mn><mi>&#x03C0;</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>c</mi></mrow></mfrac></mrow><msup><mi>j</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BC;</mi></mrow></msup></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msqrt><mrow data-mjx-texclass="ORD"><mo>&#x2212;</mo><mi>g</mi></mrow></msqrt></mrow></mrow></mfrac></mrow><msup><mi>&#x03B5;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x03BD;</mi><mi>&#x03BC;</mi><mi>&#x03B1;</mi><mi>&#x03B2;</mi></mrow></mrow></msup><msub><mi>F</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x03B1;</mi><mi>&#x03B2;</mi><mo>;</mo><mi>&#x03BC;</mi></mrow></mrow></msub><mo>=</mo><mn>0</mn></mtd></mtr></mtable></mrow><mo fence="true" stretchy="true" symmetric="true" data-mjx-texclass="CLOSE"></mo></mrow><mo>&#x21D4;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">{</mo><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msqrt><mrow data-mjx-texclass="ORD"><mo>&#x2212;</mo><mi>g</mi></mrow></msqrt></mrow></mrow></mfrac></mrow><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><msqrt><mrow data-mjx-texclass="ORD"><mo>&#x2212;</mo><mi>g</mi></mrow></msqrt></mrow><msup><mi>F</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x03BC;</mi><mi>&#x03BD;</mi></mrow></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>,</mo><mi>&#x03BD;</mi></mrow></mrow></msub><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>4</mn><mi>&#x03C0;</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>c</mi></mrow></mfrac></mrow><msup><mi>j</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BC;</mi></mrow></msup></mtd></mtr><mtr><mtd></mtd><mtd><msup><mi>&#x03B5;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x03BD;</mi><mi>&#x03BC;</mi><mi>&#x03B1;</mi><mi>&#x03B2;</mi></mrow></mrow></msup><msub><mi>F</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x03B1;</mi><mi>&#x03B2;</mi><mo>,</mo><mi>&#x03BC;</mi></mrow></mrow></msub><mo>=</mo><mn>0</mn></mtd></mtr></mtable></mrow><mo fence="true" stretchy="true" symmetric="true" data-mjx-texclass="CLOSE"></mo></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire ART-Skript page

Identifiers

  • F
  • μ
  • ν
  • ν
  • π
  • c
  • j
  • μ
  • ε
  • ν
  • μ
  • α
  • β
  • Fαβ,μ
  • F
  • μ
  • ν
  • ν
  • π
  • c
  • j
  • μ
  • g
  • ε
  • ν
  • μ
  • α
  • β
  • F
  • α
  • β
  • μ
  • g
  • g
  • F
  • μ
  • ν
  • ν
  • π
  • c
  • j
  • μ
  • ε
  • ν
  • μ
  • α
  • β
  • Fαβ,μ

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results