Alpha-Zerfall
65px|Kein GFDL | Der Artikel Alpha-Zerfall basiert auf der Vorlesungsmitschrift von Moritz Schubotz des 11.Kapitels (Abschnitt 0) der Kern- und Strahlungsphysikvorlesung von Prof. Dr. P. Zimmermann. |
|}}
{{#ask: |format=embedded |Kategorie:Kern- und StrahlungsphysikKapitel::11Abschnitt::!0Urheber::Prof. Dr. P. Zimmermann |order=ASC |sort=Abschnitt |offset=0 |limit=20 }} {{#set:Urheber=Prof. Dr. P. Zimmermann|Inhaltstyp=Script|Kapitel=11|Abschnitt=0}} Kategorie:Kern- und Strahlungsphysik __SHOWFACTBOX__
Warum nicht p, n, d-, sondern α-Zerfall?
- Grund
- Die hohe Bindungsenergie{{#set:Fachbegriff=Bindungsenergie|Index=Bindungsenergie}} Eα = 28 MeV bewirkt, daß diese
Energie besonders für schwere Kerne (ab ca. 200) oft größer ist als die Ablösearbeit von 2 Protonen und 2 Neutronen, so daß -Zerfall energetisch möglich wird.
Warum nicht spontaner Zerfall in für Kernreaktionen typischen Zeiten von 10-21 s?
Grund: Coulombbarriere, Tunneleffekt
Tunneleffekt (Gamow): "Überspringen der Barriere wegen Energieunschärferelation ". Vereinfacht mit Rechteckbarriere:
Anpassung der Wellenfunktionen und ihrer Ableitungen an den beiden Sprungstellen ergibt 4 Bestimmungsgleichungen für die 5 Amplituden A, B, C, D, F (A Normierung).
Rechnung
Für "dicke" Barriere Kd = 1 ist eKd der beherrschende Faktor, d.h. . Für allgemeinen Potentialverlauf: mit Gamowfaktor , z. B. für Coulombpotential ist der Gamowfaktor in mathematisch geschlossener Form angebbar und tabelliert.
Somit Übergangswahrscheinlichkeit A für α-Zerfall:
"Wahrscheinlichkeit für die Bildung eines a-Teilchens mal Zahl der Stößels gegen Potentialwall"