Klein Gordon im (Vektor)Potential, Eichinvarianz

From testwiki
Revision as of 23:59, 4 September 2010 by Schubotz (talk | contribs) (Die Seite wurde neu angelegt: „<noinclude>{{ScriptProf|Kapitel=1|Abschnitt=1|Prof=Brandes|Thema=Quantenmechanik|Schreiber=Moritz Schubotz}}</noinclude> ===Klein Gordon im (Vektor)Potential, Ei…“)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

{{#set:Urheber=Brandes|Inhaltstyp=Script|Kapitel=1|Abschnitt=1}} Kategorie:Quantenmechanik __SHOWFACTBOX__


Klein Gordon im (Vektor)Potential, Eichinvarianz

Die klassische relativistische DispersionsrelationDispersionsrelation:klassisch{{#set:Fachbegriff=Dispersionsrelation:klassisch|Index=Dispersionsrelation:klassisch}} E=E(p_)für freie Teilchen der Masse m ohne äußeres Potential lautet:

E2=m2c4+p2c2

     (1.15)


  • Potential ϕ, Vektorpotential A beschreiben das elektromagnetische Feld der Maxwell-Gleichungen. Wie ädert sich damit (1.15)? Erinnerung:

Failed to parse (unknown function "\begin{align}"): {\displaystyle \begin{align} & \text{Magnetfeld}\quad \underline{B}=\underline{\nabla }\times \underline{A} \\ & \text{elektrisches Feld}\quad \text{\underline{E}=-}\underline{\nabla }\phi -\frac{1}{c}{{\partial }_{t}}\underline{A} \\ \end{align}}

     (1.16)


  • E und B ändern sich nicht bei EichtransformationEichtransformation{{#set:Fachbegriff=Eichtransformation|Index=Eichtransformation}}

A_A_+_.χϕϕ1ctχ

     (1.17)


mit einer beliebigen skalaren Funktion

χ=χ(x_,t)


  • Klassische Mechanik: E und B in HamiltonfunktionHamiltonfunktion:elektrisches Feld{{#set:Fachbegriff=Hamiltonfunktion:elektrisches Feld|Index=Hamiltonfunktion:elektrisches Feld}} eines Teilchens mit Masse m, Ladung e „einbauen“ durch
H=p22mH=(p_eA_)22m+eϕ


     (1.18)


aus den Hamilton-GleichungenHamilton-Gleichungen:klassische Mechanik{{#set:Fachbegriff=Hamilton-Gleichungen:klassische Mechanik|Index=Hamilton-Gleichungen:klassische Mechanik}} r˙_=p_Hp˙_=r_H folgt (AUFGABE)

mr_¨=e(r_˙×B_+E_)

d.h. die Newton‘schen Bewegungsgleichungen mit der Lorentzkraft sind ‚manifest invariant‘, da nur E und B in ihr auftreten, d.h. die Bahn (r_˙,r_)im Phasenraum nicht von χ vgl. (1.17) abhängt.

itΨ=H^Ψ={(p_^eA_)22m+eϕ}Ψ


     (1.19)

(durch Vergleich mit (1.18))

    1. Schrödingergleichung + Prinzip der lokalen EichinvarianzPrinzip der lokalen Eichinvarianz{{#set:Fachbegriff=Prinzip der lokalen Eichinvarianz|Index=Prinzip der lokalen Eichinvarianz}} (fundamentaler und wesentlich für die QED und QCD etc.)

Erwartungswerte sind invariant unter globalen Eichtransformationen

Ψ*(x_,t)O^(x_,_,t)Ψ(x_,t)ddx=invariant''

     (1.20)


      • Schritt 3: (Prinzip der lokalen Eichinvarianz) ändere die Schrödingergleichung so, dass lokale Eichtransformationen

Ψ(x_,t)Ψ(x_,t)eiφ(x_,t)

     (1.21)


nichts an der Phase ändern, dass heißt mit Ψ ist auch Ψeiφ(x_,t) eine Lösung der Schrödingergleichung und ergibt dieselben Eigenwerte.


Lösung: In (1.20) machen _ und tin

O^(x_,_,t)

Probleme, da z.B.

_Ψ(x_,t)eiφ(x_,t)eiφ(x_,t)_Ψ(x_,t)

     (1.22)


was man bräuchte, um die Phase in (1.20) zu eliminieren.

Idee: ersetze Ableitung _durch „kovariante Ableitungkovariante Ableitung{{#set:Fachbegriff=kovariante Ableitung|Index=kovariante Ableitung}}“ D[1], so dass

D_ϕΨ(x_,t)eiφ(x_,t)=eiφ(x_,t)D_Ψ(x_,t)

     (1.23)


Mit dem Ansatz D_φ=_+f_φ(x_,t) und ebenso für die Zeitableitung tDφ0=t+gφ(t) folgt dann

D_φΨ(x_,t)eiφ(x_,t)=(_Ψ)eiφ(x_,t)+Ψi(_φ)eiφ(x_,t)+f_φ(x_,t)=eiφ(x_,t)(D_φ+i_φ)ΨDφ0Ψ(x_,t)eiφ(x_,t)==eiφ(x_,t)(D_φ0+itφ)Ψ

Die lokale Eichtransformation bewirkt also

D_φ=_+f_φ(x_,t)D_=_+f_φ(x_,t)+iφ(x_,t)D0=t+gφ(x_,t)D0=t+gφ(x_,t)+itφ(x_,t)

     (1.24)


Nun liefert der Vergleich mit (1.17)

A_A_+_.χϕϕtχmit χc=1

f_φ=iαA_,φ=αχ,gφ=iαφ,α

in der Schrödingergleichung steht also statt _nun

_+iαA_

und statt

t

nun tiαφ mit

f_φ,gφ

als Eichfelder.

Sei

=1

. Statt

itΨ=12m(_i)2Ψnun itΨ+αϕΨ=12m(_i+αA_)2Ψ

Die Umbenennung von αeliefert

itΨ={(p_eA_)22m+eϕ}Ψ

     (1.25)



Diskussion

  • Die „Vorschrift“ p_p_eA_ heißt minimale Kopplungminimale Kopplung{{#set:Fachbegriff=minimale Kopplung|Index=minimale Kopplung}}
  • Durch das Prinzip der lokalen Eichinvarianz haben wir die Potentiale ϕ und A sowie die KopplungskonstanteKopplungskonstante{{#set:Fachbegriff=Kopplungskonstante|Index=Kopplungskonstante}} e quasi „hergeleitet“.
    1. Jetzt Klein-Gordon-GleichungKlein-Gordon-Gleichung:elektrisches Feld{{#set:Fachbegriff=Klein-Gordon-Gleichung:elektrisches Feld|Index=Klein-Gordon-Gleichung:elektrisches Feld}} mit ϕ, A: Wieder eichinvariante Ableitungen wie bei Schrödingergleichung

p_^=i_p_^eA_=i_eA_tt+ieϕ

     (1.26)


=t2_2(t+ieφ)2(_ieA_)2(+m2)Ψ=0{(t+ieφ)2(_ieA_)2+m2}Ψ=0(=c=1)

Anwendung: Klein Gordon Gleichung für Coulomb-Potential: A_=0,eϕ=Zα. Ähnlich wie bei der SchrödingergleichungSchrödingergleichung:Wasserstoffproblem{{#set:Fachbegriff=Schrödingergleichung:Wasserstoffproblem|Index=Schrödingergleichung:Wasserstoffproblem}} für das Wasserstoffproblem haben wir

{(t+ieφ)2Δ+m02}Ψ=0

     (1.27)


Lösen durch SeparationsansatzSeparationsansatz{{#set:Fachbegriff=Separationsansatz|Index=Separationsansatz}}

Ψ(r,θ,φ;t)=eiEtYlm(θ,φ)Kugelfl a¨ chenfunktionenχ(r)x

  • Radialgleichung für RadialwellenfunktionenRadialwellenfunktionen{{#set:Fachbegriff=Radialwellenfunktionen|Index=Radialwellenfunktionen}} χ(r)
  • Vergleich mit H-Atom. Schrödingergleichung (AUFGABE) liefert
E=±m0(1Z2α22n2+Z2α4n4[38n2l+1]+O(z6α6))


     (1.28)


hier gibt es positive und negative Lösungen nHauptquantenzahlnrRadialquantenzahl+1+l

Der 3. Termin in (1.28) ist die relativistische Korrektur zur kinetischen Energie. Spin wird durch Klein-Gordon-Gleichung nicht beschrieben deshalb ist (1.28) nicht geeignet für Feinstruktur des H-Atoms

Klein Gordon Gleichung beschreibt Spin -0 – Teilchen z.B. π-Mesonen.

Spin ½  Dirac Gleichung


  1. D_Ψ für Wellenfunktion ohne extra Phase eiφ,D_φΨeiφfür Wellenfunktion mit extra Phase