Bifurkationen
65px|Kein GFDL | Der Artikel Bifurkationen basiert auf der Vorlesungsmitschrift von Franz- Josef Schmitt des 7.Kapitels (Abschnitt 3) der Mechanikvorlesung von Prof. Dr. E. Schöll, PhD. |
|}}
{{#set:Urheber=Prof. Dr. E. Schöll, PhD|Inhaltstyp=Script|Kapitel=7|Abschnitt=3}} Kategorie:Mechanik __SHOWFACTBOX__
Sei der Fluß von einem Kntrollparametr µ abhängig, so zeigt sich, dass sich die Zahl der Attraktoren bei einem kritischen Wert µc schlagartig ändern kann.
Es treten dann sogenannte Bifurkationen auf ( "Verzweigungen" der Lösungsmannigfaltigkeit).
Notwendige Voraussetzung für diesen Prozess ist jedoch Nichtlinearität !
Bifurkationspunkte sind oft verknüpft mit Stabilitätswechsel. Das bedeutet, die lineare Stabilität der Fixpunkte im Falle lokaler Bifurkationen muss untersucht werden.
Klassifizierung einfachster Bifurkationen:
Eigenwert- Null - Bifurkation
stabiler Fixpunkt ( Knoten) -> instabilen Fixpunkt ( Sattelpunkt für
)
detA>0 -> detA<0
A1) Sattel- Knoten- Bifurkation
einfachster Fall:
Fixpunkte existieren also nur für
Somit existieren:
und
für
A2) Transkritische Bifurkation
Stabilitätswechsel bei µc=0
A3) Stimmgabelbifurkation (pitchfork bifurcation)
superkritisch:
für
zum Eigenwert µ ist der Fixpunkt stabil für µ<0 und zu -2µ stabil für µ>0
subkritisch
mit den ersten beiden Fixpunkten nur für µ<0, ansonsten , für µ>0 existiert nur x*=0
Stabil ist jedoch lediglich der Fixpunkt x*=0 für µ<0:
- Hopf- Bifurkation
instabiler Fokus mit Grenzzyklus
mit:
stabiler Fokus instabiler Fokus mit Grenzzyklus
Übergang vom stabilen Fokus zum instabilen Fokus mit Grenzzyklus
sei n=2:
tr A > 0 ( instabiler Fokus)
( Voraussetzung: det A >0 )
mindestens n=2 nötig !
Deterministisches Chaos
Deterministische, aber ungeordnete Bewegung im Langzeitverhalten von Systemen mit
( autonom):
Seltsamer ( chaotischer) Attraktor
komplexes, irreguläres Verhalten kann verschiedene Ursachen haben, die sich im zeitlichen verhalten einer Observablen oft schwer unterscheiden lassen.
Als Unterscheidungskriterien bieten sich an:
quasiperiodisch deterministisches Chaos stochastisches Rauschen
wenige dynamische Freiheitsgrade: viele mikroskopische Freiheits-
niedrigdimensionaler Phasenraum grade. ( Statistisches Ensemble)
d=2,3,4,... seltsamer Attraktor, fraktale Dimension
für
für
- Fourierspektrum ( bzw. Leistungsspektrum):
diskrete Frequenzen
b r e i t e s F r e q u e n z b a n d
Instabilität der Bewegung bei kleinen
Störungen der Anfangsbedingungen
typische universelle
Bifurkationszenarien
Def.: Eine Bewegung heißt chaotisch, wenn sie empfindlich von den Anfangsbedingungen abhängt.
Quantitative Formulierung der Stabilität gegenüber kleinen Variationen der Anfangsbedingungen:
Bahnstabilität / Orbitale Stabilität
bahnstabil: Alle benachbarten Bahnen bleiben in einer
- Röhre um
Aymptotisch bahnstabil:
Der Abstand benachbarter Bahnen geht gegen Null für t-> unendlich
Ljapunov- stabil
für t-> unendlich ( t gleicher Zeitpunkt auf beiden Bahnen)
Linearisierung in der Nähe der Lösungskurve
Dabei:
Eigenwerte und zugehörige Eigenvektoren
Formale Lösung:
Dies ist die Zeitentwicklung einer infinitesimalen Kugel um
, also ein n-dimensionaler Ellipsoid mit den Hauptachsen
Definition: Stabilität ist bestimmt durch die Ljapunov-Exponenten
Nebenbemerkung: Sei
der führende ( größte) Ljapunov- Exponent
Das heißt, der Abstand der anfangs leicht auseinanderliegenden Phasenraumkurven wächst mit
.
Für <0: kleine Abweichungen der Anfangsbedingungen werden exponenziell gedämpft
>0: die benachbarten Bahnen laufen exponenziell auseinander ( Kriterium für Chaos)
Für den chaotischen Attraktor im gilt:
Auf dem Attraktor: auf dem Attraktor: chaotische Bewegung
- Bifurkationspunkte
- Von außen Annäherung an den Attraktor ( Abstand verringert sich exponenziell).
Beispiel für ein Ljapunov- Spektrum: