Räumliche Translationsinvarianz
65px|Kein GFDL | Der Artikel Räumliche Translationsinvarianz basiert auf der Vorlesungsmitschrift von Franz- Josef Schmitt des 3.Kapitels (Abschnitt 2) der Mechanikvorlesung von Prof. Dr. E. Schöll, PhD. |
|}}
{{#set:Urheber=Prof. Dr. E. Schöll, PhD|Inhaltstyp=Script|Kapitel=3|Abschnitt=2}} Kategorie:Mechanik __SHOWFACTBOX__
Seien die Kräfte konservativ und seien keine Randbedingungen:
Eine Translation in Richtung x ist damit eine Translation der Form:
Der Parameter s ist dabei beliebig.
Die Translationsinvarianz entlang der x- Achse bewirkt nun:
Das bedeutet aber: es darf keine äußere Kraft in x- Richtung geben!
Für die Transformation gilt:
(Identität)
Für unser Integral der Bewegung gilt jedoch:
Fazit: die Translationsinvarianz in x- Richtung bestimmt die Erhaltung der x-Komponente des Gesamtimpulses.
Dieser Zusammenhang ist leicht für die anderen Komponenten zu zeigen.
Dies kann auch umgekehrt betrachtet werden:
Wähle q1=s als verallgemeinerte Koordinate:
Nun gilt die Transformation:
als Schwerpunktskoordinate und
als Relativpositionen.
Es folgt:
Invarianz Erhaltungssatz
äquivalent zum Erhaltungssatz
Allgemein heißt
der zur Koordinate qj konjugierte verallgemeinerte Impuls.
Falls gilt dass
wenn also die Lagrangefunktion invariant gegen q1- Änderungen ist, dann nennt man q1 eine zyklische Koordinate. der zu q1 konjugierte Impuls ist in diesem Fall eine Erhaltungsgröße .
Hier:
At last! Somoene who understands! Thanks for posting!
BovdhS <a href="http://tnxeigjwwmpq.com/">tnxeigjwwmpq</a>