Kovariante Schreibweise der Relativitätstheorie

From testwiki
Revision as of 16:37, 9 September 2010 by Schubotz (talk | contribs)
Jump to navigation Jump to search


{{#set:Urheber=Prof. Dr. E. Schöll, PhD|Inhaltstyp=Script|Kapitel=7|Abschnitt=1}} Kategorie:Quantenmechanik __SHOWFACTBOX__


Grundpostulat der speziellen Relativitätstheorie:

kein Inertialsystem ist gegenüber einem anderen ausgezeichnet ( es existiert kein Ruhezustand)

Einstein, 1904

Eine Bewegung ist vom Ruhezustand nicht zu unterscheiden, so lange sie nicht zu einer anderen Bewegung in Relation gesetzt wird !

Die Lichtgeschwindigkeit c ist in jedem Inertialsystem gleich !!

Also: r¯2c2t2=r¯´2c2t´2

Kugelwellen mit der Ausbreitungsgeschwindigkeit c sind Lorentz- invariant !

Formalisierung

Der raumzeitliche Abstand

(ds)2:=(cdt)2(dr¯)2

ist in jedem Bezugssystem gleich, bleibt also invariant bei Transformationen zwischen Inertialsystemen ( Lorentz- Transformationen !)

Man kann (ds)2

als Skalarprodukt von Vierervektoren mit 3 Orts- und einer Zeitkomponente schreiben.

Diese Vektoren leben im Minkowski- Raum V (Spannen diesen auf).

V ist natürlich nicht euklidisch. Sonst würde Pythagoras gelten!

Dann benutze man den Formalismus der LINEAREN ORTHOGONALEN Transformationen, unter denen das Skalarprodukt invariant ist:

Def.: Als kontravariante Komponenten des 4-Zeit-Orts-Vektors ( Vierervektors) bezeichnet man:

x0:=ctxα,α=1,2,3

Zeitkomponente und kartesische Komponenten des Ortsvektors r¯

es schreibt sich

(ds)2=(dx0)2(dx1)2(dx2)2(dx3)2

Def.: als kovariante Komponenten des 4-Zeit-Orts-Vektors ( Vierervektors) bezeichnet man:

x0:=x0xα:=xαα=1,2,3

Der kovariante Vektor ist Element des dualen Vektorraums V~

V~

ist der Raum der linearen Funktionale l, die V auf R abbilden:

V~={lineareFunktionalel:V>R}

es schreibt sich

(ds)2=dx0dx0+dx1dx1+dx2dx2+dx3dx3=dxidxi

Natürlich mit Summenkonvention über i=0,1,2,3,...

Wenn ein Index oben ( kontravariant) und ein Index unten ( kovariant) steht.

Verallgemeinerung

Für beliebige 4- Vektoren ai

gilt:

a0=a0aα=aαα=1,2,3

Lorentz- Invariante lassen sich als Skalarprodukt aiai

schreiben:

Der d´Alemebert-Operator

#:=Δ1c22t2=xixi

Mit

xi=(1ct,xα)=:i

kovariant

Die Eigenschaft der Kovarianz wird später aus dem Transformationsverhalten begründet !

xi=(1ct,xα)=:i

kontravariant

-> Die Eigenschaft der Kontravarianz wird später aus dem Transformationsverhalten begründet !

Also:

#=ii

Vierergeschwindigkeit

ui:=dxidsds=(dxidxi)12=(c2dt2(dr¯)2)12=c[1(1cdr¯dt)2]12dtds:=(1β2)12dt=cγdt

Dabei gilt:

β:=vc=1c|dr¯dt|γ:=11β2

Also:

u0=γuα=γcvα=1cdxαdτ

Mit der Eigenzeit

dτ=dtγ

Die Eigenzeit ist als die Zeit im momentanen Ruhesystem zu verstehen !

uiui=dxidxids2=1

ist nicht vom Bezugssystem abhängig, also invariant !

Viererimpuls

pi:=m0cuipipi=m02c2uiui=m02c2p0=m0c1(vc)2=m(v)c=p0pα=m0vα1(vc)2=m(v)vα=pα

Physikalische Bedeutung von p0

Mit der 4-er Kraft: ki:=ddτpi

folgt die Leistungsbilanz:

kiui=[ddτ(m0cui)]ui

Mit Hilfe des Energiesatz kann dies umgewandelt werden zu

kiui=m0c2ddτ(uiui)=0uiui=1

also lorentzinvariant !

Außerdem gilt:

kiui=ddτ(p0)u0+kαuα=γddτ(p0)+γckαvα=γc[ddτ(cp0)k¯v¯]=0(cp0)=Energiek¯v¯=Leistung

Somit jedoch folgt eine Bestimmungsgleichung an (p0)=Ec

, also E=m0c2(1β2)

als Energie eines relativistischen Teilchens.

Das Skalarprodukt des Viererimpulses liefert lorentzinvariant pipi=E2c2p¯2=m02c2p¯=m0v¯1β2

Also folgt an die Energie:

E2=m02c4+c2p¯2

Dies ist die relativistsiche Energie- Impuls- Beziehung

Mathematischer Formalismus zur Tensorrechnung:

Für Tensoren zweiter Stufe gilt:

Möglich ist: AikAikAikAik

Es gilt:

A00=A00=A00=A00A10=A10=A10=A10A11=A11=A11=A11usw...

Die Spur eines Tensors ist dagegen wieder allgemein:

spA=Aii=Aii

- er Einheitstensor

δki=δik

wie beim Kronecker- Symbol 1 für i=k und sonst Null, also symmetrisch

δikak=aiδikakl=ail

usw..

Der metrische Tensor

gik:=δik=δikfu¨rk=0gik:=δik=δikfu¨rk=1,2,3gik:=δik=(1111)=gikgikak=δikak=aifu¨ri=0ai=aigikak=δikak=aifu¨ri=1,2,3ai=ai

Also:

gikak=δikak=aifu¨ri=0,1,2,3

Man spricht auch vom heben und Senken der Indices durch die Metrik !

Lorentz- Trnsformationen ( linear, homogen) ΣΣ´

x´i=UikxkUik=(γβγ00βγγ0000100001)

für v||x1

Somit:

Uki=(γβγ00βγγ0000100001)

Wobei γ2=11β2

Damit läßt sich die Invarianz des Skalaprodukts leicht zeigen:

a´i=Uikakb´i=Uikbkb´i=Uikbk=Uikbka´ib´i=UikUilakbl=!=akbkalso:UikUil=δkl

U ist also eine orthogonale Trafo

Umkehr- Transformation:

ai=Ukia´kai=Ukia´k

Denn:

UkiUklal=δilal=ai

In Matrizenschreibweise:

Uik=(γβγ00βγγ0000100001)Ukl=(γβγ00βγγ0000100001)UikUkl=(γ2β2γ20000β2γ2+γ20000100001)=(1000010000100001)=δil

Transformationsverhalten des Vierergradienten

xi:=i=x´kx´kxi=Ukix´k=Uki´k

Mit der Identität

x´kxi=Uki

Das heißt jedoch

xi

transformiert sich wie ai

, also kovariant

Analog kann gezeigt werden:

xi:=i=x´kx´kxi=Ukix´k

xi

transformiert sich wie ai

, also kontravariant. ( PRÜFEN !)