Zustände mit Bahn- und Spinvariablen
65px|Kein GFDL | Der Artikel Zustände mit Bahn- und Spinvariablen basiert auf der Vorlesungsmitschrift von Franz- Josef Schmitt des 4.Kapitels (Abschnitt 3) der Quantenmechanikvorlesung von Prof. Dr. E. Schöll, PhD. |
|}}
{{#set:Urheber=Prof. Dr. E. Schöll, PhD|Inhaltstyp=Script|Kapitel=4|Abschnitt=3}} Kategorie:Quantenmechanik __SHOWFACTBOX__
Sei nun ein Zustand, der Bahn- und Spinfreiheitsgrade beschreibt:
Der Bahnzustand ist Element des Bahn- Hilbertraumes und der Spinzustand Element des Spin- Hilbertraumes. Der Gesamtzustand erfordert einen Raum, der sich als direktes Produkt der beiden Hilberträume zeigt.
Allgemein gilt für separable oder Produktzustände
(äquivalente Sprechweise):
Ein beliebiger Zustand kann nach Spin- Basis Zuständen
zerlegt werden:
mit
In der Ortsraum- Basis mit dem Bahn- Zustand
In der Matrix- Darstellung des Spinraumes ergibt dies:
Mit
entsprechend 2 Spinkomponenten, also entsprechend
Die Vollständigkeit der Zustände
folgt aus:
Weiter:
Also die Komponenten von am Ort , einmal die Komponente mit Spin und einmal die Komponente mit Spin . Dabei gilt:
entspricht der Wahrscheinlichkeit, das Elektron zur Zeit t bei mit Spin bzw. Spin zu finden.
Schrödingergleichung im Spin- Bahn- Raum
Hamilton- Operator für Bahn:
Elektron mit Ladung e{{H}_{B}}</math>
Hamilton- Operator für Spin:
wirkt dabei nur im Hilbertraum
Also haben wir je nach Spinzustand schon 2 Schrödingergleichungen in
Es gilt (äquivalente Darstellung):
Dabei
= Einsoperator im Spinraum -> Spin bleibt unberücksichtigt. Einheitsmatrix für beliebigen Vorgang im Spinraum:
In Matrix- Darstellung:
Pauli Gleichung
Anwendung: - einfacher Zeeman- Effekt mit Spin. 1 Elektron im kugelsymmetrischen Potenzial ( Kern (H)oder Atomrumpf(Na)) und homogenen Magnetfeld
Dabei wird durch der Bahndrehimpuls Hamiltonian durch den Spinraum erweitert.
Wie man sieht bekommt man durch den Korrekturterm eine Korrektur an die Energie. Für B=0 -> Eigenzustände mit Spin
Insgesamt fach entartet. Beim H- Atom: zusätzliche l- Entartung
Das bedeutet: teilweise Aufhebung der - fachen Entartung (sogenannter Anomaler Zeemann-Effekt{{#set:Fachbegriff=Anomaler Zeemann-Effekt|Index=Anomaler Zeemann-Effekt}} !)
Dies gilt für paramagnetische Atome mit magnetischem Moment .
Dabei entspricht vor ms dem gyromagnetischen Verhältnis, kommt also wegen dem Landé- Faktor g=2, auch wenn dieser leicht von 2 verschieden ist ! ( Siehe oben). Für dieses Beispiel wird die Energieverschiebung linear zu B am besten in Einheiten von angegeben. s und p - Orbital lassen sich folgendermaßen in einem sogenannten Termschema skizzieren ( für den anomalen Zeemann- Effekt ): Das heißt: die m- Entartung, die ohne Spin vollständig aufgehoben wurde, ist jetzt nur noch teilweise aufgehoben! Da die Aufhebung der Spin- Entartung die Energiezustände wieder so "weiterrückt", dass vorher getrennte wieder zusammenfallen!
Teilchen | s | g | Q |
---|---|---|---|
Elektron | 1/2 | 2 | -e |
Proton | 1/2 | 5,59 | e |
Neutron | 1/2 | -3,83 | 0 |
Neutrino | 1/2 | 0 | 0 |
Photon | 1 | 0 | 0 |