Historischer Abriß

From testwiki
Revision as of 09:12, 24 August 2010 by Schubotz (talk | contribs) (Die Seite wurde neu angelegt: „{{Scripthinweis|Quantenmechanik|1|1}} Normal 0 21 false false false DE X-NONE X-NONE MicrosoftInterne…“)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search


{{#set:Urheber=Prof. Dr. E. Schöll, PhD|Inhaltstyp=Script|Kapitel=1|Abschnitt=1}} Kategorie:Quantenmechanik __SHOWFACTBOX__


    Normal  0      21      false  false  false    DE  X-NONE  X-NONE                                       MicrosoftInternetExplorer4
  • bis 1900: Klassische Physik
  • Eine Erweiterung der klassischen Physik wurde notwendig, da einige experimentelle Fakten nicht zu verstehen sind

‘1900: Planck

  • Hohlraum- Strahlungsformel.
  • Dabei erste Quantenhypothese: Energie Austausch zwischen Materie und Strahlung im thermodynamischen Gleichgewicht erfolgt in Quanten mit Energie
  • E=hνFailed to parse (syntax error): {\displaystyle h=6,6\cdot {{10}^{-34}}Js</math* Plancksches Wirkungsquantum ====‘1905: Einstein==== Photoeffekt: Photonen als Lichtquanten mit der Energie <math>E=h\nu }


und dem Impuls


p=k


( Compton 1925)


Beim Photoelektrischen Effekt werden trotz eintreffender Photonen zunächst gar keine Elektronen emittiert. Erst ab einer gewissen Schwellfrequenz des eingestrahlten Lichtes, nicht jedoch ab einer gewissen Schwellintensität kommt es dann zur Emission von Elektronen. Deren kinetische Energie steigt jedoch nicht mit der Intensität der eingestrahlten Photonen sondern hängt lediglich von der Frequenz des eingestrahlten Lichtes ab.

==

‘1912/13: N. Bohr====


  • Energieterme des Atoms
  • Rutherford zeigt 1911 durch Streuung von
  • - Teilchen die Existenz von positiv geladenen Atomkernen mit sehr kleinem Radius.
  • Modell: Elektronen kreisen um den Kern. Klassische Elektrodynamik fordert jedoch die Abstrahlung von Energie bei beschleunigten Ladungen. Dann müssten die Elektronen spiralförmig in den Kern stürzen.


  • Bohrs ad hoc Postulat: Stabile Bahnen mit diskreten Energien sind möglich:

Energie:


En


  • Strahlung:
  • bei Übergang


Quantenbedingung:


pdq=2πpϕ=nh


, n aus ganzen Zahlen


Wir erinnern uns: Dies entspricht einer Transformation der klassischen Hamiltonfunktion auf Wirkungsvariablen!


Man bekommt eine Quantisierungsbedingung, wenn man fordert, dass der Drehimpuls auf den Bahnen quantisiert ist! Dies war das eigentliche ad- hoc- Postulat von Bohr.


Seine Metapher war: Es existieren nur Bahnen, auf denen ein halbzahliges Vielfaches der Elektronenwellenlänge untergebracht werden kann, um die Elektronenwelle auf der Bahn stetig schließen zu können! (dazu existieren schöne, veranschaulichende Bildchen mit ganzen Wellen auf den äußeren Bahnen !)


Aus den Gesetzen der klassischen Mechanik folgt dann aus dieser Quantisierungsbedingung für den Drehimpuls eine Quantisierungbedingung an die Energie:


En=Z2e2aB2n2


mit dem Bohrschen Radius


aB=2mee2


Wir stellen analog zur Darstellung der kinetischen Energie in der Hamiltonschen Mechanik fest: Der Hamiltonoperator kann dargestellt werden:


H=p^22m+V(r)=L^22mr2+p^r22m+V(r)


‘1924 L. de Broglie: Materiewellen

Beliebigen , freien Teilchen wird mittels der Beziehungen


E=hν


und


p¯=k¯


eine Frequenz


ω=2πν


und über


|k¯|=2πλ


eine Wellenlänge ( De- Broglie- Wellenlänge) zugeordnet.


Ganz in Analogie zum Licht


Dispersionsbeziehung der De- Broglie Welle:

nichtrelativistisch relativistisch


E=p22m=ω(k¯)




E=m02c4+c2p2


ω(k¯)=k22m




ω(k¯)=1m02c4+c22k2


Mit der Teilchengeschwindigkeit v ergibt sich:


p=mv




p=m0v1v2c2


E=m0c21v2c2


Phasengeschwindigkeit der de Broglie Welle:

vph:=ωk=k2m=v2




vph:=ωk=Ep=c2v>c



vph=v=c


für Photonen im Vakuum


Gruppengeschwindigkeit:

vGr:=dωdk=km=v




vGr:=dωdk=c2kω=c2vph=v


Die Gruppengeschwindigkeit der De- Broglie- Wellen ist also gleich der Teilchengeschwindigkeit


Für ebene Wellen gilt:


vGr:=dωdk=ωk=vph


für ebene Wellen im Vakuum ist die Frequenz also linear von der Wellenzahl abhängig ! Dies gilt nicht mehr im Medium !


Experimenteller Nachweis
  • Elektronenstrahlen zeigen Interferenz, also eindeutige Welleneigenschaften ( Davisson, Germer, 1927, Rupp 1928)

Aus einer Glühkathode mit Beschleunigungsspannung fliegen die Elektronen auf die Probe, eine Metallfolie mit Gitterkonstante a. Dabei zeigen sich Bereiche konstruktiver Interferenz auf dem Fluoreszenzschirm.


Die Bedingung für konstruktive Interferenz ( Nebenmaxima) ist:


asinϑ=nλ


Anwendung: Elektronenmikroskopie


Doppelspaltexperiment:

Im Fall a) und b) wird nur ein Spalt freigegeben.


Die Intensität der Schwärzung:


ρ(x¯,t)~|Ψ(x¯,t)|2

folgt einer Gaußverteilung.

Der Aufbau wird derart realisiert, dass jedes Elektron einen lokalisierten Lichtblitz erzeugt.


ρ(x¯,t)

ist also nicht als Materiedichte sondern als WSK- Dichte, das Teilchen am Ort

x¯

zur Zeit t anzutreffen, zu interpretieren.

Die Häufigkeitsverteilung de Auftreffens ergibt dann das Beugungsbild.

Dies ist wesentlich. Es handelt sich eben nicht um Interferenz gleichzeitig propagierender Elektronen. Selbst mit einzelnen Elektronen ergibt sich das gezeigte Bild.

Im Fall c), wenn beide Spalte offen sind, kommt es gerade zu der angesprochenen interferierenden Verteilung.

Dabei gilt:

ρ(x¯,t)~|ΨA(x¯,t)+ΨB(x¯,t)|2


Dies ist das Superpositionsprinzip mit der Interpretation des Betragsquadrats als Wahrscheinlichkeit. Aus diesen beiden Axiomen folgt die Interferenz der Quantenmechanik ! Das Superpositionsprinzip folgt aus der Linearität der Schrödingergleichung !


Zusammenfassung: Welle- Teilchen- Dualismus ( ohne äußere Potenziale)

Wellenexperimente

Licht: klassisch als Welle verstanden:

ω,k¯ω=c|k¯|


Elektron: quantenmechanische Vorstellung einer Welle:

ω(k¯)=k22mω=Ek¯=p¯


Teilchenexperimente ( Photoeffekt, Comptoneffekt)

nicht klassisch bei Licht:

E=ωp¯=k¯E=cp


klassisch bei Elektronen:

E,p¯

wie bei Teilchen:

E=p22m

(nichtrelativistisch)

Weitere Entwicklung

‘1925: Schrödinger E.: Wellen- Mechanik

Schrödingergleichung:

itΨ=HΨ=22mΔΨ+V(r¯)Ψ


Dies entspricht einer nichtrelativistischen Wellengleichung für die Wellenfunktion

Ψ(r¯,t)


‘1925: Heisenberg: Matrizenmechanik

Entwicklung der kanonischen Vertauschungsrelationen für die kanonische Variable

q¯

, entsprechend

q¯=r¯

, Ort und

p¯

= Impuls:


[pk,ql]:=iδkl


Interpretation von p und q als unendlichdimensionale Matrizen ( in der heutigen Sprache: lineare Operatoren im Hilbertraum).


Ab 1925: Quantentheorie ( Kopenhagener Deutung)
‘1927: Max Born:

Statistische Interpretation der Wellenfunktion: Betragsquadrat ist Aufenthaltswahrscheinlichkeit

‘1932: J. v. Neumann:

Äquivalenz von Wellen- und Matrizenmechanik

Dirac, P.:

Relativistische Quantentheorie

R. Feynman:

Quantenelektrodynamik