Abschirmung radioaktiver Strahlung

From testwiki
Revision as of 23:49, 1 June 2011 by Schubotz (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

{{#ask: |format=embedded |Kategorie:Kern- und StrahlungsphysikKapitel::10Abschnitt::!0Urheber::Prof. Dr. P. Zimmermann |order=ASC |sort=Abschnitt |offset=0 |limit=20 }} {{#set:Urheber=Prof. Dr. P. Zimmermann|Inhaltstyp=Script|Kapitel=10|Abschnitt=0}} Kategorie:Kern- und Strahlungsphysik __SHOWFACTBOX__

Abbremsung geladener Teilchen (Bethe-Bloch-Formel)

miniatur|zentriert|hochkant=4|Abbremsung geladener Teilchen

Übertragener Impuls (senkrecht zur Flugrichtung)

P=Kraft×Stosszeit14πϵ0Ze2b2bv

Übertragene Energie E=p22m14πϵ02Z2e4b2v2m


Summation über alle Elektronen mit Stoßparameter{{#set:Fachbegriff=Stoßparameter|Index=Stoßparameter}} zwischen b und b + db ergibt Faktor 2πbdbN (N Dichte der Elektronen, im Festkörper ist N ~ ρ).


Intergration über alle Stoßparameter zwischen bmax und bmin ergibt Energieverlust pro Wegstrecke dx

dEdx=bminbmax14πϵ02Z2e42πNmv21bdb=14πϵ02Z2e42πNmv2lnbmaxbmin

{{#set:Gleichung=Energieverlust pro Wegstrecke|Index=Energieverlust pro Wegstrecke}}


Wichtiger Faktor:Z2Nv2


Obere und untere Grenze:

bminλ¯=mv de Broglie Wellenlänge{{#set:Fachbegriff=de Broglie Wellenlänge|Index=de Broglie Wellenlänge}} des Elektrons vom Ruhesystem des ion. Teilchens aus gesehen


bmax: Stoßzeit bmax/v kleiner als mittlere Umlaufzeit des Atomelektrons, d. h. bmax/v1/ν~bmaxv/ν~

bmaxbminlnmv2hν~lnmv2<I>

<I> mittleres Ionisationspotential{{#set:Fachbegriff=Ionisationspotential|Index=Ionisationspotential}} grob: <I>12eVZAbsorber


Genauere Rechnung mit relativistischen Termen (besonders wichtig für ion. Elektronen, da diese schon im MeV-Bereich relat. zu behandeln sind).


miniatur|zentriert|hochkant=3|Allgemeine Form von dE/dx


Energieverlust von e-, p und α in Luft (ρ1,2mg/cm3 )

miniatur|zentriert|hochkant=3 Damit Reichweiten Luft Festkörper z. B. E1 MeV

miniatur|hochkant=2|Reichweiten

Absorption von Gamma-Strahlung

Photoeffekt{{#set:Fachbegriff=Photoeffekt|Index=Photoeffekt}} - Compton-Effekt{{#set:Fachbegriff=Compton-Effekt|Index=Compton-Effekt}} - Paarbildung{{#set:Fachbegriff=Paarbildung|Index=Paarbildung}}


Photoeffekt

ω gebundenes Atomelektron (insbes. die 1s-Elektronen) --> freies Elektron mit e=ω-Bindungsenergie des Elektrons

(hohe Abhängigkeit des Wirkungsquerschnitts von ZAbsorber mit ca. Z5)


Compton-Effekt

ω+e (als freies Elektron betrachtet) --> ω 'Stoß', Klein-Nishina-Formel{{#set:Fachbegriff=Klein-Nishina-Formel|Index=Klein-Nishina-Formel}}


Paarbildung

ab 1 MeV

ω+ Kerncoulombpotentiale++e


grob
Photoeffekt{{#set:Fachbegriff=Photoeffekt|Index=Photoeffekt}} im keV-Bereich, Comptoneffekt{{#set:Fachbegriff=Comptoneffekt|Index=Comptoneffekt}} im MeV-Bereich und Paarbildung{{#set:Fachbegriff=Paarbildung|Index=Paarbildung}} ab ca. 10 MeV entscheidend
genauer
Wegen der hohen Z-Abhängigkeit von Photoeffekt und Paarbildung ist der relative Beitrag zur γ-Abschwächung verschieden (s. Diagramme für C und Pb)


Relativer Beitrag zur γ-Abschwächung miniatur|zentriert|hochkant=3|Kohlenstoff

miniatur|zentriert|hochkant=3|Blei


Abschwächungskoeffizient µ = µ(Photo) + µ(Compton) + µ(Paar)


miniatur|zentriert|hochkant=3

miniatur|zentriert|hochkant=3 miniatur|hochkant=3|z.B. Eγ = 1 MeV

Neutronen

  1. Schnelle n abbremsen: nach Stoßkinematik am besten durch Kernstöße mit leichten Kernen, z. B. H20, Graphit, Paraffin
  2. Absorption: besonders gut bei thermischen n durch Cadmium (Cd113 , 13% im nat. Gemisch) mit dl/l0 = 0,18 mm

Betonabschirmung ρ=2,3kg/dm3

En [MeV] dl/l0 [ cm]
1 8
10 28
100 80