Quantenmechanische Gleichgewichtsverteilungen
65px|Kein GFDL | Der Artikel Quantenmechanische Gleichgewichtsverteilungen basiert auf der Vorlesungsmitschrift von Franz- Josef Schmitt des 2.Kapitels (Abschnitt 3) der Thermodynamikvorlesung von Prof. Dr. E. Schöll, PhD. |
|}}
{{#set:Urheber=Prof. Dr. E. Schöll, PhD|Inhaltstyp=Script|Kapitel=2|Abschnitt=3}} Kategorie:Thermodynamik __SHOWFACTBOX__
Quantenmechanische Gleichgewichtsverteilungen
Mikrozustände:
Klassischer Zustandsraum mit -> quantenmechanischer Zustandsraum ( Hilbertraum)
Basis (vollständiges ONS): mit
Ortsdarstellung der Wellenfunktion
Mikroobservable
Klassische Phasenraumfunktion M: ( Ms kommutieren):
--> quantenmechanische Observablen ( Hermitesch): kommutieren im Allgemeinen nicht !
Quantisierung = Aufstellung von Vertauschungsrelationen !
Maximalmessung: Messung eines vollständigen Satzes vertauschbarer Observablen |
{{#set:Definition=Maximalmessung|Index=Maximalmessung}}
Spektraldarstellung{{#set:Fachbegriff=Spektraldarstellung|Index=Spektraldarstellung}}:
denn:
Projektionsoperator auf den Zustand Alpha: Observable: Ist das System im Zustand
- Projektionsoperator{{#set:Fachbegriff=Projektionsoperator|Index=Projektionsoperator}} auf
Quantenmechanische Erwartungswerte einer Messung
Wahrscheinlichkeit für das Resultat im Zustand ( Maximalmessung):
Schreibweise mit Projektor auf Zustand
in einer völlig beliebigen Basis
Satz: Die Spur ist invariant bei Basiswechsel:
Also gleich in Basis Alpha wie Beta !
- Quantenmechanisches Gemisch
Gemengezustand: Vergl. Fick: Grundlagen der Quantentheorie, Kapitel 7
- QM- Wahrscheinlichkeitsaussagen ( prinzipielle Unschärfe)
- Zusätzliche Statistik
- Unvollständige Information über den Mikrozustand des Systems ( z.B., nach einer vollständigen Messung im Zustand
- wird vom Messergebnis nicht Kenntnis genommen !
Basis der Mikrozustände : -> sample set der Zufallsereignisse Wahrscheinlichkeitsverteilung
Erwartungswert, qm- Erwartungswert im Zustand
mit dem statistischen Operator ( Dichtematrix ):
Überlagerung der Projektoren mit dem statistischen Gewicht !
Summary
Bemerkung:
Reine Zustände -> kohärente Überlagerung von Wahrscheinlichkeitsamplituden:
mit den quantenmechanischen Phasen
Gemisch: Inkohärente Überlagerung von reinen Zuständen:
- keine quantenmechanischen Interferenzterme !
- -> Die statistischen Operatoren nur der reinen Zustände können als Summe über Projektoren geschrieben werden !
Normierung des statistischen Operators:
Also: für reine Zustände ist der statistische Operator ein Projektor auf diesen reinen Zustand !
einheitliche Darstellung !! Nebenbemerkung
Mathematische Formulierung des Zustandsbegriffs ( klassisch + quantenmechanisch)
Zustand = normiertes, positives lineares Funktional auf der Algebra der Observablen:
reiner Zustand = Extremalpunkt der konvexen menge der Zustände !
Informationsmaße
Nebenbemerkung: ist ( wie alle Operatorfunktionen) definiert durch die Spektraldarstellung:
Eigenschaften wie im klassischen Fall:
Verallgemeinerter kanonischer statistischer Operator
Vorurteilsfreie Schätzung unter Nebenbedingungen
Voraussetzung: Die reinen Zustände haben die gleiche a-priori- Wahrscheinlichkeit ist durch Maximalmessung gegeben !
Nebenbemerkung: Die müssen nicht miteinander kommutieren,
damit sie Erhaltungsgrößen sind ! ( im thermodynamischen Gleichgewicht)
Kanonischer Statistischer Operator:
Übung: Berechnung der Fermi / Boseverteilung
Hilbertraum des großkanonischen statistischen Operators: ( Fock- Raum)