Wahrscheinlichkeitsbegriff

From testwiki
Revision as of 22:08, 16 September 2010 by *>SchuBot (Interpunktion)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search


{{#set:Urheber=Prof. Dr. E. Schöll, PhD|Inhaltstyp=Script|Kapitel=1|Abschnitt=1}} Kategorie:Thermodynamik __SHOWFACTBOX__


Ereignis
Messergebnis von Observablen (event) oder fester Mikrozustand (der realisiert wird).

Ereignisse bilden einen Abelschen Verband{{#set:Fachbegriff=Abelschen Verband|Index=Abelschen Verband}} (Ereignisalgebra)

Merke: Ereignisalgebra = Abelscher verband A´

mit Mengentheoretischen Verknüpfungen

,

Vereinigung (oder) und Durchschnitt (und)

Für A,B,C A´ gilt:

AB=BAAB=BA

(Kommutativitätsgesetz)

A(BC)=(AB)CA(BC)=(AB)C

Assoziativität

A(AB)=AA(AB)=A

(Verschmelzungsgesetz)

A(BC)=(AB)(AC)A(BC)=(AB)(AC)

Distributivgesetz

SAS=A0A0=A

Existenz der Eins (sicheres Ereignis) und Existenz des Nullelements: "leeres Ereignis"

AA´BAB=0,AB=S

Existenz des Komplements

B=¬A=A¯

Induzierte Halbordnung

AB A impliziert B, falls AB=A

Also: menge A liegt in B

A und B sind disjunkt, falls AB=0

Vollständig disjunkte Ereignismenge (sample set)

{A1,A2,...,An}mitAiAj=Aiδiji=1nAi=S

Beispiel:

Ereignismenge

{1,2,3,4,5,6}

Bemerkung: Diese Menge M ist keine Algebra, da

ABMA¯M

Wahrscheinlichkeit

Empirische Definition

P(A)=limNN(A)N

mit

N(A)N

relative Häufigkeit des Ereignisses A

N(A) ist die Zahl der Experimente mit dem Ergebnis A

N ist die Zahl der Experimente insgesamt

axiomatische Definition (Kolmogoroff)

Sei AA´

(Boolscher Verband)

Sei

SA´

das sichere Ereignis.

Dann erfüllt die Wahrscheinlichkeit P(A)

die Axiome:

P(A)0P(S)=1

Für disjunkte Ereignisse:

AB=0P(AB)=P(A)+P(B)

Folgerung

P(A)+P(A¯)=P(AA¯)=1P(A)1

Zerlegung in disjunkte Ereignisse

für beliebige A1, A2:

A1A2=A1+A¯1A2=A1+A2A1A2A¯1A2=A2A1A2A2=A1A2+A¯1A2

Also folgt für Wahrscheinlichkeiten:

P(A1A2)=P(A1)+P(A¯1A2)=P(A1)+P(A2)P(A1A2)P(A2)=P(A1A2)+P(A¯1A2)

Also:

P(A1A2)+P(A1A2)=P(A1)+P(A2)P(A1A2)0P(A1A2)P(A1)+P(A2)

Speziell

P(A1)P(A2),
falls A1A2

bedingte Wahrscheinlichkeit

Die Bedingte Wahrscheinlichkeit (A unter der Bedingung, dass B), ergibt sich gemäß

Also A unter der Bedingung, dass B eingetreten ist!

P(A/B)=P(AB)P(B)

Falls A von B unabhängig ist, so gilt:

P(AB)=P(A)P(B)P(A/B)=P(AB)P(B)=P(A)

Nebenbemerkung, ebenso gilt:

P(B/A)=P(AB)P(A)=P(B)

Zufallsvariablen

Eine Zufallsvariable ist gegeben durch

  1. eine Menge M von vollständig disjunkten Ereignissen (sample set) Xi
  2. eine Wahrscheinlichkeitsverteilung P(Xi)
  3. über M

es gilt die Normierung

iP(Xi)=1

Definiert man sich dies für eine kontinuierliche Menge, also xR,


so gilt:

P(x´xx´+dx´)=ρ(x´)dx´

definiert eine Wahrscheinlichkeitsdichte oder auch Wahrscheinlichkeitsverteilung ρ(x).


Übergang zu diskreten Ereignissen:

ρ(x)=i=1nδ(xx(i))Pi

mit Normierung

abρ(x)dx=1

Physikalische Interpretation

Die Wahrscheinlichkeitsverteilung kann man sich realisiert denken durch ein Ensemble von vielen äquivalenten Systemen, also durch eine Dichteverteilung ρ(x)dx

der Mitglieder des Ensembles mit Werten zwischen x und x+dx

Verallgemeinerung auf d Zufallsvariablen

x=(x1,x2,...,xd)Rdddx=dx1dx2...dxd

Die Normierung geschieht dann in einem d- Dimensionalen Raum.

ρ(x)ddx=1

Mittelwert (Erwartungswert) einer Zufallsvariablen x:

x=ρ(x)xddx

für eine beliebige Funktion f(x):

f=ρ(x)f(x)ddx

Nebenbemerkung

Der Mittelwert ist ein lineares Funktional fρ:[R

[ff

Linearität:

c1f1+c2f2=c1f1+c2f2

Unkorrelierte Zufallsvariable:

x1 und x2 heißen unkorreliert, falls

ρ(x1,x2)=ρ1(x1)ρ2(x2)

Dann gilt:

x1x2=x1x2

Beweis:

Merke: In Bezug auf die Wahrscheinlichkeitsverteilungen ist unkorreliert gleichbedeutend mit separabel _> die Phasen werden addiert!

Sind die Zustände verschränkt, so können die Phasen nicht addiert werden.

Die Einführung einer Symplektik ist nötig! (siehe unten).

Zusammenhang zwischen Wahrscheinlichkeitsverteilung und Mittelwerten

Wir verstehen als n.tes Moment einer Wahrscheinlichkeitsverteilung:

Mn:=xn

Momentenerzeugende:

Z(a)=eax=0(ax)nn!=0(a)nn!MnMn=nanZ(a)|a=0=Mn

Durch die Angabe aller nicht verschwindender Momente ist eine Wahrscheinlichkeitsverteilung vollständig festgelegt!

Verallgemeinerung auf d Zufallsvariablen:

Mn1,n2,...nd:=x1n1x2n2....xdnd

ein Moment der Ordnung

n:=n1+n2+...+nd

Momentenerzeugende:

Z(a)=eax=n1,n2...nd=0((a1x1)n1(a2x2)n2...(adxd)nd)n1!n2!...nd!=n1,n2...nd=0((a1)n1(a2)n2...(ad)nd)n1!n2!...nd!Mn1..nda=(a1,a2,...,ad)

Kumulante

Cn1,n2,...nd:=x1n1x2n2....xdndC

ist definiert durch die Kumulantenerzeugende:

Γ(a)=lneax
n1....nda1n1....adndΓ(a)|a=0=Cn1,n2,...ndΓ(a)=lneax=n1...nda1n1...adndn1!...nd!Cn1,n2,...nd

Eigenschaft

Kumulanten sind ADDITIV für unkorrelierte Zufallsvariablen (Dies gilt nicht für die Momente!!)

Beweis: seien x1, x2 unkorreliert:

Z(a)=eax=dx1dx2ρ(x1)ρ(x2)ea1x1ea2x2=ea1x1ea2x2Γ(a)=lnZ(a)=lnea1x1+lnea2x2=Γ(a1)+Γ(a2)nanΓ(a)|a=0(x1+x2)nC=xnC=x1nC+x2nC

Fluktuation:

Δx:=xx

mit

Δx=0

Bildung der Varianz:

(Δx)2=(xx)2=x22xx+x2=x2x2

Als Maß für die Breite einer Verteilung

Korrelationsmatrix:

ΔxkΔxl=xkxlxkxl

Nichtdiagonalelemente verschwinden für unkorrelierte Zufallsvariablen. Denn dann: separieren die Momente der WSK- Verteilung! Siehe oben

  • Korrelationsmatrix beschreibt die qm- Korrelationen über ihre Außerdiagonalelemente

Zusammenhang zwischen Kumulanten und Momenten:

xC=xx2C=(Δx)2=x2x2x3C=(Δx)3x4C=(Δx)43(Δx)22

Gaußverteilung / Normalverteilung

ρ(x)=Aexp((xx)22σ2)σ2:=(Δx)2=x2C

Mit Sigma als Standardabweichung

Normierung:

dxρ(x)=Aσ2duexp(u2)=!=1u:=xσ2

Wegen:

duexp(u2)=πA=1σ2π

Nebenbemerkung, die Gaußverteilung ρ(x) ist bestimmt durch xC,x2C.

Alle höheren Kumulanten verschwinden!