Beispiel des Großkanonischen Ensenbles

From testwiki
Jump to navigation Jump to search


{{#set:Urheber=Prof. Dr. A. Knorr|Inhaltstyp=Script|Kapitel=2|Abschnitt=4}} Kategorie:Thermodynamik __SHOWFACTBOX__


Illustration am Anhand von Gν={H,N}hα={V} definiert das großkanonische Ensemble man kannt durch die Wahl sofort R, S=Sgk


R=1ZeνλνGνRgk=1Zgkeλ1Hλ2N


oftmals λ1=β,λ2=βμ

(λ1,λ2)(β,μ)

wir zeigen: β=1kT Temperatur taucht auf muss gezeigt werden μ = Chemisches Potential ist die Energie die man braucht um 1 Teilchen hinzu zufügen


Rgk=1Zeβ(HμN)



Entropie

braucht man um Zustandsgleichung festzulegen

S=S(Gν,hα)

Sgk=Sgk(H,N,V)

Sgk(E,N,V)=kβEkβμN+klnZgk(βμV)


Formel für Entropie siehe anfang der VL

Lagrangeparameter /Zustandsgleichung

Beziehungen der partiellen Ableitungen aus Gibbsgleichung

kλν=GνS;kνλνMν,α=hαS für ν=1

kλν=GνSkβ=(SE)V,N¯;kνλνMν,α=hαS(SN)E,N¯=kβTr(HVR)


kλν=GνSkβ=(SE)V,N¯((V,N sind nicht anzufassen bei der partiellen Ableitung))kνλνMν,α=hαS(SN)E,N¯=kβTr(HVR)(VN0)

für ν=2

kβμ=(SE)V,N¯kVlnZgk=kβpp=1βVlnZgk

Man hat also Gleichungen für die Lagrangeparameter und die Zustandsgleichung für den Druck gewonnen. Lagrangeparameter noch nicht physikalisch bestimmt!

vorweg genommen


T1=(SE)V,N¯μ=T(SN¯)V,Ep=kTV(lnZgk)

Temperatur und chemisches Potential

Nullter Hauptsatz der Thermodynamik

Es existiert eine skalare Größe T (Temperatur) zur Charaktersierung eines Systems; bei Kontakt (und langem Warten) sind die Temperaturen zweier Systeme gleich. anlog Potential, Druck

Optische Absorption eines Zweinivieausystems

Thermische Zustandsgleichung)=