Stabilität und Langzeitverhalten

From testwiki
Jump to navigation Jump to search


{{#set:Urheber=Prof. Dr. E. Schöll, PhD|Inhaltstyp=Script|Kapitel=7|Abschnitt=2}} Kategorie:Mechanik __SHOWFACTBOX__



Hier soll eine allgemeinere Definition von Stabilität gegeben werden.

Fixpunkte

x¯*

des autonomen dynamischen Systems

Definition:


x¯*
heißt stabil (auch : Ljapunov- stabil), wenn zu jeder Umgebung U von
x¯*
eine Umgebung V von
x¯*
existiert, so dass:


x¯Vφ(x¯,t)Ut0


Definition:


x¯*
heißt asymptotisch stabil (auch : Ljapunov- stabil), wenn zu
x¯*
eine Umgebung U und eine Umgebung U´ von
x¯*
existiert, so dass:


φ(U,t2)U´φ(U,t1)Ufu¨rt2>t10 und limtφ(x¯,t)=x¯*x¯U


Das heißt anschaulich: Die Umgebung U schrumpft mit wachsendem t auf

x¯*
zusammen. Das heißt: Phasenraumvolumina schrumpfen.

asymptotisch stabile Fixpunkte treten somit nur in nicht hamiltonschen Systemen (also bei nicht alleine konservativen Kräften) auf. (Vergl. Kapitel 4.5: Satz von Liouville)

Def.: Ein dynamisches System heißt dissipativ, wenn Phasenraumvolumina schrumpfen.

Lokales Kriterium für Stabilität

Wenn

x¯*

stabil ist, dann hat keiner der Eigenwerte der Jacobimatrix

(DF)x¯*

einen positiven Realteil

Beispiel: Fixpunkt a) des Pendels mit / ohne Reibung, also der Fixpunkt mit Winkel und Ort =0, x1=x2=0

Hinreichende Bedingung für asymptotische Stabilität:

Alle Eigenwerte haben negative Realteile

Somit wird die Lösung für die Störung für unendliche Zeit beliebig klein und divergiert nicht. Imaginärteile sind oszillierend und damit irrelevant für die Stabilität. Sie geben an, in welcher Zeit die Annäherung an den Fixpunkt (falls vorhanden) erfolgt.

Beispiel für Instabilität: Fixpunkte b)

Allgemeines System mit n=2:

Linearisierung


(δx˙1δx˙2)=A(δx1δx2)(a11a12a21a22):=A


Eigenwertgleichung:

det(Aλ1)=0|(a11λa12a21a22λ)|=(a11λ)(a22λ)a12a21=λ2λtrA+detA=0


Somit:

λ1/2=12(trA±(trA)24detA) mit trA=iFixi=divF¯


Fallunterscheidung

Stabiler Fokus (Strudelpunkt)

detA>0

trA<0


(trA)2<4detA


λ1/2=λ0±iωλ0,ω>0


Dies ist eine gedämpfte Schwingung im Phasenraum. Die Phasenraumkruve ist eine elliptische Spirale:

Instabiler Fokus

detA>0

trA>0


(trA)2<4detA


λ1/2=+λ0±iωλ0,ω>0


Dies ist eine entdämpfte Schwingung. Die Phasenraumkurve ist ebenfalls eine elliptische Spirale, die jedoch in positiver Zeitrichtung nach Außen durchlaufen wird. Damit tr A >0 muss dem System von Außen zugeführt werden (Beispiel: "negative Reibung"):

Stabiler Knoten

detA>0

trA<0


(trA)2>4detA


λ1/2<0λ1/2R


Dies ist ein exponenzieller Zerfall. Fast alle Trajektorien nähern sich dabei entlang des Eigenvektors, der zum betragsmäßig kleineren Eigenwert gehört. Weil hier das "Kriechen" zum Fixpunkt, also der Zerfall langsamer stattfindet:


Haha. I woke up down today. You’ve cehered me up!

Sattelpunkt

detA>0


λ1>0λ2<0λ1/2R


That's really tnhiknig out of the box. Thanks!

Möglichkeit zur asymptotischen Stabilität

Wegen trA=0 folgt Keine asymptotische Stabilität möglich.

Beweis: Asymptotische Stabilität nur, wenn alle

λi<0trA=iλi+iλi


aber:

iλi

besteht aus komplex konjugierten Paaren, da die Eigenwertgleichung reell ist!

Somit gilt jedoch

trA=iλi<0,
was ein Widerspruch zur Voraussetzung für asymptotische Stabilität, mit trA=0

I thank you humlby for sharing your wisdom JJWY

Beispiel zur Stabilität

Touchdown! That's a rlaley cool way of putting it!

RXMz7l <a href="http://nishkgdlbwki.com/">nishkgdlbwki</a>