Hamiltonsches Prinzip: Difference between revisions

From testwiki
Jump to navigation Jump to search
Line 34: Line 34:
mit partieller Integration (<math>\int{u'v=uv-\int{v'u}}</math>) mit  
mit partieller Integration (<math>\int{u'v=uv-\int{v'u}}</math>) mit  
<math>u=\delta q,v={{\partial }_{{\dot{q}}}}L</math>
<math>u=\delta q,v={{\partial }_{{\dot{q}}}}L</math>




Line 40: Line 41:




<math>\delta S\left[ q \right]=--\int\limits_{{{t}_{1}}}^{{{t}_{2}}}{\left( {{\partial }_{q}}L\delta q-{{d}_{t}}\left( {{\partial }_{{\dot{q}}}}L \right)\delta q \right)dt}</math>






<math>\begin{align}
<math>\begin{align}
   & \delta S\left[ q \right]=--\int\limits_{{{t}_{1}}}^{{{t}_{2}}}{\left( {{\partial }_{q}}L\delta q-{{d}_{t}}\left( {{\partial }_{{\dot{q}}}}L \right)\delta q \right)dt} \\  
   & \delta S\left[ q \right]=\cancel {\left[ {{\partial }_{{\dot{q}}}}L\delta q \right]_{{{t}_{1}}}^{{{t}_{2}}}} -\int\limits_{{{t}_{1}}}^{{{t}_{2}}}{\left( {{\partial }_{q}}L\delta q-{{d}_{t}}\left( {{\partial }_{{\dot{q}}}}L \right)\delta q \right)dt} \\  
  & =\int\limits_{{{t}_{1}}}^{{{t}_{2}}}{\left( {{d}_{t}}{{\partial }_{{\dot{q}}}}-{{\partial }_{q}} \right)L\delta qdt}   
  & =\int\limits_{{{t}_{1}}}^{{{t}_{2}}}{\left( {{d}_{t}}{{\partial }_{{\dot{q}}}}-{{\partial }_{q}} \right)L\delta qdt}   
\end{align}</math>
\end{align}</math>

Revision as of 01:04, 19 July 2009

auch Prinzip der kleinsten Wirkung genannt

mit 

spezielle Form

führt zur Wirkung

FragenID::M1

Herleitung der Euler-Lagrange-Gleichungen

oder

mit partieller Integration () mit






Kategorie:Mechanik