Neutrinoexperimente: Difference between revisions

From testwiki
Jump to navigation Jump to search
Line 95: Line 95:
==Ergänzende Infromationen==
==Ergänzende Infromationen==
(gehört nicht zum Skript)
(gehört nicht zum Skript)
[http://www.physik.rwth-aachen.de/~stahl/Seminar/Kaufmann.pdf Seminarvortrag Experimenteller Neutrinonachweis und Helizität]


===Prüfungsfragen (Prof. Kanngießer)===
===Prüfungsfragen (Prof. Kanngießer)===

Revision as of 18:03, 28 August 2011

{{#ask: |format=embedded |Kategorie:Kern- und StrahlungsphysikKapitel::14Abschnitt::!0Urheber::Prof. Dr. P. Zimmermann |order=ASC |sort=Abschnitt |offset=0 |limit=20 }} {{#set:Urheber=Prof. Dr. P. Zimmermann|Inhaltstyp=Script|Kapitel=14|Abschnitt=0}} Kategorie:Kern- und Strahlungsphysik __SHOWFACTBOX__


a) indirekt über Rückstoßkern b) direkt über inversen ß-Zerfall

Rückstoßexperimente

Am besten Elektroneneinfang{{#set:Fachbegriff=Elektroneneinfang|Index=Elektroneneinfang}} wegen 2-Körperproblem{{#set:Fachbegriff=2-Körperproblem|Index=2-Körperproblem}}, gut geeignet z.B.

e+37Ar35d37Cl+ν (freies Edelgasatom in einer Gaszelle) mit 35d Eν=810keV

Rückstoßenergie durch Flugzeitmessung: Rückstoßgeschwindigkeit v: Mv=Pν=Eν/c,v/c=Eν/Mc2=8,1×105eV/37×109eV2×105v=6×105cm/s

Exp. von Rodeback und Allen [1] durch Koinzidenz von dem schnellen Augerelektronen{{#set:Fachbegriff=Augerelektronen|Index=Augerelektronen}}signal (Startsignal) und dem (verzögerten) Ionensignal ( 37Cl+), das bei einer Wegstrecke von z.B. l=6cm eine Flugzeit von t=l/v=6cm/6×105cms1=10μs benötigt.

Inverser ß-Zerfall

aus pn+e++νν~+pn+e+ inverser ß-Zerfall, E0Eν~

Wirkungsquerschnitt{{#set:Fachbegriff=Wirkungsquerschnitt|Index=Wirkungsquerschnitt}} für Eν~MeVσ1048m2

(σEν2 z.B. EνGeVσ1042m2)


miniatur|hochkant=3|Bedeutung von σ Festkörper z.B. Wasser N(H20)3×1022 Mo1eküle / cm³

σNl= Wahrscheinlichkeit für eine Reaktion


z.B. N1023 Kerne/cm³, Targetlänge 1 = gesamte Erde = 1,2 109 cm

σNl1044cm21023cm301,2×109cm1012

Starke Neutrinoguellen

Reaktor Antineutrino-Quelle

Spaltprodukte wegen Neutronenüberschuß{{#set:Fachbegriff=Neutronenüberschuß|Index=Neutronenüberschuß}} β-Strahler, die Antineutrino{{#set:Fachbegriff=Antineutrino|Index=Antineutrino}}s emittieren.

Pro Spaltung ca.6ν¯, daraus 'ν¯-Produktion aus Reaktorleistung berechenbar:

Pro Spaltung wird ca. 200 MeV= 3,2 10-17 MWs frei, d. h. bei Leistung L=1MWN(ν¯)=6ν¯1MW3,2×10172×1017ν¯/s

Sonne Neutrinoquelle

Da bei der Fusion{{#set:Fachbegriff=Fusion|Index=Fusion}} aus H --> He entsteht, müssen dabei ebenso Neutrino{{#set:Fachbegriff=Neutrino|Index=Neutrino}}s entstehen. Fusion: 2e+4pCN-ZyklusHe4+2ν+ca. 20 MeV, d.h. pro 10 MeV Fusionsenergie entsteht ca. 1 ν.

Damit Neutrinofluß auf der Erde aus Solarkonstante umgerechnet: S = 1,4 kW/m² 1ν 10 MeV = 1,6 10-12 Ws

N(ν)=1,4×103Wm21,6×1012Ws/nu=8×1014ν/m2s


Erstes Experiment von Reines und Cowan [2] mit Reaktorantineutrinos. (Los Alamos)

Das Meßprinzip beruht darauf, daß bei einer möglichen Reaktion ν¯+pn+e+ die beiden Vernichtungsquanten aus der Positronzerstrahlung e++e2γ (Eγ=0,5MeV) und nach einer bestimmten Abbremszeit durch Neutroneneinfang von 113Cd mehrere γ aus dem Kaskadenzerfall des hochangeregten 114Cd (E9MeV) in Mehrfachkoinzidenz gemessen werden. miniatur|zentriert|hochkant=3|Experiment Neutrinomessung (Reines und Cowan)

miniatur|zentriert|hochkant=3|Schema Neutrinomessung

Grobe Abschätzung der Zählrate:

σ (Reaktor-ν¯) 1047m2, Reaktor L10MW2×1018ν¯/s Fluß in ca. 1 m Abstand θ1017ν¯/m2s, Targetfläche F = 7,6 cm • 150 cm 0,1 m², d. h. ca. 1016ν¯/s durch Target von ca. 2 m Länge.


Reaktionswahrscheinlichkeit σNl1047m21029m32m1018

Zählrate/s 1016s11018102s1 Großer Untergrund durch Reaktor und kosmische Strahlung. Erste Ergebnisse in Zählrate/min:

  • 2,55 ± 0,15 Reaktor an
  • 2,14 ± 0,13 Reaktor aus

  • 0,41 ± 0,20/min

νν¯-Experiment [3]

Prinzipe+37Ar37Cl+ν37Cl+ν¯Reaktor

4000 1 CC14 wurden 30-70 Tage mit Reaktor-ν¯ bestrahlt und etwa gebildetes 37Ar durch Aktivitätsmessung gezählt --> Negatives Ergebnis

Einzelnachweise

  1. Phys. Rev. 86, 446 (1952) Neutrino Recoils Following the Capture of Orbital Electrons in A37
  2. Phys. Rev. 92, 830 (53)
  3. Davis et al., Phys. Rev. 97, 766 (1955)

Ergänzende Infromationen

(gehört nicht zum Skript)


Seminarvortrag Experimenteller Neutrinonachweis und Helizität


Prüfungsfragen (Prof. Kanngießer)

  • Neutrinoexperimente (habe alle relevanten Experimente aus dem Mayer-Kuckuk aufgezählt)
  • Experiment von Reines und Cowan näher erklären (Reaktionen aufmalen,
    • Warum Zeitdifferenz? ->Abbremszeit der Neutronen;
    • Warum NaJ als 'Y-Detektor? -> wegen benötigter Detektorgröße
  • Neutrinos: Was ist das wozu braucht man die (beim ß Zerfall)? Problem Energie + Impulserhal tung + Spin -> Erklärung es ex. ungeladenes Fermion
    • Nachweis?
      • Direkt: Ar->CI Rückstoß messen (Mit Skizze + ausführlicher Erklärung)Indirekt: induzierter Protonzerfall , e+e-Annihilalion; Koinzidenz verzögert CdNeutronnachweis
    • Was misst man jeweils Neutrino/Antineutrino; Wo bekommt man sie her?--> Sonne/Kernreaktor
    • warum? -> Neutronenüberschuß der Spaltprodukte