Kerndrehimpulse und elektromagnetische Kernmomente: Difference between revisions

From testwiki
Jump to navigation Jump to search
No edit summary
Line 2: Line 2:




Der {{FB|Kerndrehimpuls}} I setzt sich aus den {{FB|Bahndrehimpuls}}en <math>1_i</math> und
Der {{FB|Kerndrehimpuls}} I setzt sich aus den {{FB|Bahndrehimpuls}}en <math>l_i</math> und
Spins <math>s_i</math> der elnzelnen Nukleonen zusammen. <math>I = \sum l_i + s_i</math>. Bahndrehimpulse
{{FB|Spin}}s <math>s_i</math> der elnzelnen Nukleonen zusammen.
<math>1_i</math> als Erhaltungsgrößen setzen ein Zentralpotential <math>V = V(r)</math> voraus, in dem sich die Nukleonen praktisch frei und ohne
: <math>I = \sum l_i + s_i</math>.
 
Bahndrehimpulse
<math>l_i</math> als Erhaltungsgrößen setzen ein Zentralpotential <math>V = V(r)</math> voraus, in dem sich die Nukleonen praktisch frei und ohne
Stöße im Kerninneren bewegen. Diese Einteilchenvorstellung, welche die Basis des Schalenmodells (Kap. 7) ist, hat ihre Begründung darin,
Stöße im Kerninneren bewegen. Diese Einteilchenvorstellung, welche die Basis des Schalenmodells (Kap. 7) ist, hat ihre Begründung darin,
daß die Nukleonen als Fermionen im Grundzustand alle nach dem Pauli-Prinzip erlaubten Zustände besetzen, so daß es keine "Stöße"
daß die Nukleonen als {{FB|Fermionen im Grundzustand}} alle nach dem {{FB|Pauli-Prinzip}} erlaubten Zustände besetzen, so daß es keine "Stöße"
gibt und die Nukleonen quasi als freie Teilchen auftreten.
gibt und die Nukleonen quasi als freie Teilchen auftreten.



Revision as of 21:41, 16 June 2011

{{#ask: |format=embedded |Kategorie:Kern- und StrahlungsphysikKapitel::5Abschnitt::!0Urheber::Prof. Dr. P. Zimmermann |order=ASC |sort=Abschnitt |offset=0 |limit=20 }} {{#set:Urheber=Prof. Dr. P. Zimmermann|Inhaltstyp=Script|Kapitel=5|Abschnitt=0}} Kategorie:Kern- und Strahlungsphysik __SHOWFACTBOX__


Der Kerndrehimpuls{{#set:Fachbegriff=Kerndrehimpuls|Index=Kerndrehimpuls}} I setzt sich aus den Bahndrehimpuls{{#set:Fachbegriff=Bahndrehimpuls|Index=Bahndrehimpuls}}en und Spin{{#set:Fachbegriff=Spin|Index=Spin}}s der elnzelnen Nukleonen zusammen.

.

Bahndrehimpulse als Erhaltungsgrößen setzen ein Zentralpotential voraus, in dem sich die Nukleonen praktisch frei und ohne Stöße im Kerninneren bewegen. Diese Einteilchenvorstellung, welche die Basis des Schalenmodells (Kap. 7) ist, hat ihre Begründung darin, daß die Nukleonen als Fermionen im Grundzustand{{#set:Fachbegriff=Fermionen im Grundzustand|Index=Fermionen im Grundzustand}} alle nach dem Pauli-Prinzip{{#set:Fachbegriff=Pauli-Prinzip|Index=Pauli-Prinzip}} erlaubten Zustände besetzen, so daß es keine "Stöße" gibt und die Nukleonen quasi als freie Teilchen auftreten.


Bahndrehimpuls

miniatur|'Vektor'-Modell Operatorenzuordnung , Separation der Wellenfunktionen in Radial- und Winkelteil. Die sphärischen Kugelfunktionen sind die Eigenfunktionen von und mit den Eigenwerten und .

1 = 0, 1, 2, 3, 4, ...
    s, p, d, f, g spektr. Bezeichnung

m = -l, ... 0, ... +l Einstellmöglichkeiten


Spin

miniatur|Spin-Darstellung Spin

Ergebnis der relat. Quantenmechanik (Diractheorie{{#set:Fachbegriff=Diractheorie|Index=Diractheorie}}). Halbzahlige Spin-Teilchen (z.B. n, p, e, ... ) sind Fermionen, deren Wellenfunktionen bei Teilchentausch sich anti symmetrisch verhalten (Pauli-Prinzip{{#set:Fachbegriff=Pauli-Prinzip|Index=Pauli-Prinzip}}). Im Gegensatz dazu sind ganzteilige Spin-Teilchen (einschließlich s = 0) Bosonen, (z.B. d, , Photonen, Pionen) mit bei Teilchentausch symmetrischen Wellenfunktionen. Unterschiedliche Statistik.

Gesamtdrehimpuls

miniatur|Gesamtdrehimpuls "parallel" oder"antiparallel"

Gesamtdrehimpuls{{#set:Fachbegriff=Gesamtdrehimpuls|Index=Gesamtdrehimpuls}} eines einzelnen Nukleons ~ "parallel" oder"antiparallel"


Bei mehreren Nukleonen gibt es verschiedene Kopplungsmöglichkeiten, wie beispielsweise in der Atomphysik die LS-Kopplung{{#set:Fachbegriff=LS-Kopplung|Index=LS-Kopplung}} mit oder die jj-Kopplung{{#set:Fachbegriff=jj-Kopplung|Index=jj-Kopplung}} mit .


Experimentelle Ergebnisse für die Kerndrehimpulse I:

         (g, g) I = 0 (im Grundzustand)
(u, g) , (g, u) I = 1/2, 3/2, 5/2, ...
         (u, u)   = 0, 1, 2, 3, ...


Neigung der Protonen und Neutronen, sich jeweils paarweise durch "Antiparallelstellung" der Einzeldrehimpulse mit bzw. zu kompensieren.


Folgerung für (u, g)- und (g, u)-Kerne

d. h. 1(u, g) = Einzeldrehimpuls des letzten ungepaarten Protons Entsprechend Einzeldrehimpuls des letzten ungepaarten Neutrons.

Magnetisches Kerndipolmoment µI

Mit dem Bahndrehimpuls und Spin der Nukleonen sind magnetische Dipolmomente verbunden.

Bahn

Datei:BahnDrehmoment19.png a) Bahn~ ~ magn. Dipolmoment = c^{-1} Strome Fläche with

Bohrsches Magneton
Elektron
Kernmagneton
Proton

Spin

b) Spin Für -Teilchen erwartet man in Analogie zum Bahnbeitrag

Falsch!

Experimentell gilt allgemein

g-Faktor


Dabei ist für das Elektron nach der Diractheorie bis auf kleinere quantenelektrodynamische Korrekturen bestätigt. Für Proton und Neutron erwartet man deshalb und (wegen fehlender Ladung). Die gemessenen Werte und jedoch, daß die Nukleonen keine einfachen "Punkt-Teilchen" zeigen sind.


Die magnetischen Kerndipolmomente für (g, u)- und (u,g)-Kerne lassen sich (zumindest für leichte Kerne) näherungsweise auf den des letzten ungepaarten Nukleons zurückführen (Schmidt-Modell).

Elektrisches Kernquadrupolmoment Q

Q gibt Abweichung von der Kugelgestalt wieder

Potential \phi für p im Außenraum

Legendre Polynome{{#set:Fachbegriff=Legendre Polynome|Index=Legendre Polynome}}

miniatur Die Bedeutung der Entwicklungskoeffizienten erkennt man durch direkte Berechnung des Potentials auf der z-Achse, also für und Koeffizientenvergleich:

oder direkt berechnet

mit .
n=0
Punktladung
n=1
elektrisches Dipolmoment in -Richtung (=0 da Kernkräfte die Parität erhalten)
n=2


Bei konstanter Ladungsverteilung ist deshalb . Größenordnung: (lb) Vorzeichen: Datei:KernQuadrupolmoment-Geometry21.png