Tröpfchenmodell, Weizsäckersche Massenformel: Difference between revisions

From testwiki
Jump to navigation Jump to search
No edit summary
Line 110: Line 110:
:<math>1kg\quad^{235}U:E=N\Delta E\backsimeq\frac{1000}{235}6\times10^{23}\times2\times10^{8}\times1,6\times10^{-19}{ Ws}\backsimeq8\times10^{13}{ Ws}\backsimeq10^{8}{ MWd}</math>
:<math>1kg\quad^{235}U:E=N\Delta E\backsimeq\frac{1000}{235}6\times10^{23}\times2\times10^{8}\times1,6\times10^{-19}{ Ws}\backsimeq8\times10^{13}{ Ws}\backsimeq10^{8}{ MWd}</math>


That’s more than snseblie! That’s a great post!
====Fusion====


xAu9UT  <a href="http://jwxdzufcycld.com/">jwxdzufcycld</a>
Bei sehr leichten Kernen Durchtunneln des {{FB|Coulombwalls}} oberhalb von <math>1 keV \approx 1,2 10^7 K</math> möglich (z.B. Sonneninnere mit <math>T \approx 1,5 10^7 K</math> und <math>\rho \approx 10^5 kg /m^3</math>).
 
Kontrollierte Fusion mit Deuterium und Trithium
<math>d+^{3}H\to\underset{3MeV}{^{4}He}+\underset{14MeV}{n}+17,6MeV</math>
 
<math>n+^{7}Li\to^{4}He+\underbrace{^{3}H}_{t_{1/2}\approx12a}+n-2,5MeV</math>
 
==siehe auch==
http://de.wikipedia.org/wiki/Bethe-Weizs%C3%A4cker-Formel
[[Datei:Isotopentabelle_Segre.svg|miniatur]]
[[Datei:Tröpfchenmodell.PNG|miniatur]]
[[Datei:Mattauch1.PNG|miniatur]]
<references />

Revision as of 14:27, 9 August 2011

{{#ask: |format=embedded |Kategorie:Kern- und StrahlungsphysikKapitel::4Abschnitt::!0Urheber::Prof. Dr. P. Zimmermann |order=ASC |sort=Abschnitt |offset=0 |limit=20 }} {{#set:Urheber=Prof. Dr. P. Zimmermann|Inhaltstyp=Script|Kapitel=4|Abschnitt=0}} Kategorie:Kern- und Strahlungsphysik __SHOWFACTBOX__


Die nahezu konstante Nukleonendichte{{#set:Fachbegriff=Nukleonendichte|Index=Nukleonendichte}} und der nahezu konstante B/A-Wert ("Kondensationswärme{{#set:Fachbegriff=Kondensationswärme|Index=Kondensationswärme}}") legt die Analogie zum Flüssigkeitstropfen nahe. Massenformel[1]


Bindungsenergie{{#set:Fachbegriff=Bindungsenergie|Index=Bindungsenergie}} setzt sich aus 5 Anteilen zusammen:

1. Volumenenergie{{#set
Fachbegriff=Volumenenergie|Index=Volumenenergie}}: Volumenenergie ("Kondensationswärme" ) vermindert um
2. Oberflächenenergie{{#set
Fachbegriff=Oberflächenenergie|Index=Oberflächenenergie}}: ~ Anzahl der Nukleonen an der

Oberfläche, die weniger stark gebunden sind.

3. Coulombenergie{{#set
Fachbegriff=Coulombenergie|Index=Coulombenergie}}: einer homogen geladenen Kugel

Durch die Coulombenergie würden für Isobare{{#set:Fachbegriff=Isobare|Index=Isobare}} (A = const) zu stark Kerne mit vielen Neutronen bevorzugt. In Wirklichkeit ist jedoch .

Genauer: Nuklidkarte miniatur|zentriert|hochkant=3|Nuklidkarte

Als Gegengewicht genüber dem Coulombterm deshalb:

4. Asymmetrie-Energie{{#set
Fachbegriff=Asymmetrie-Energie|Index=Asymmetrie-Energie}}:

Außerdem gilt folgende Regel, wenn man die Kerne bezüglich gerader oder ungerader Protonen- oder Neutronenzahl ordnet:

5. Parität{{#set
Fachbegriff=Parität|Index=Parität}}: Deshalb

mit


Anpassung der Formel an viele Massenwerte gibt einen optimalen Wertesatz für die 5 Parameter und mit [2]). Genauigkeit .

Folgerungen aus der Weizsäckerschen Massenformel

I. Isobarenregeln

Für Isobare{{#set:Fachbegriff=Isobare|Index=Isobare}} (A = const.) ist die Massenformel quadratisch in Z, deshalb bekommt man für A = ungerade, d.h. für (u, g)- und (g, u)-Kerne eine Parabel und für A = gerade, d.h. für (g, g)- und (u, u)-Kerne zwei Parabeln, die durch den Abstand der Paarungsenergie{{#set:Fachbegriff=Paarungsenergie|Index=Paarungsenergie}} getrennt sind.

miniatur|hochkant=3|zentriert|Isobarenparabeln

Trägt man die Massenwerte in die Nuklidkarte{{#set:Fachbegriff=Nuklidkarte|Index=Nuklidkarte}} auf der N-Z-Ebene nach oben auf, dann sind die Isobarenparabeln Schnitte längs der Linie A = Z + N = const. Die stabilen Kerne liegen in der "Talsohle des Massetals".


Umwandlung durch Beta-Zerfall:

Konkurrenzprozeß: Kerneinfang{{#set:Fachbegriff=Kerneinfang|Index=Kerneinfang}}

II. Kernspaltung und Fusion

Allgemein für leichtere Kerne Energiegewinn durch Fusion{{#set:Fachbegriff=Fusion|Index=Fusion}}, für schwerere Kerne durch Spaltung{{#set:Fachbegriff=Spaltung|Index=Spaltung}} möglich. Spontane Fusion durch Coulombabstoßung, spontane Spaltung durch Spaltschwelle{{#set:Fachbegriff=Spaltschwelle|Index=Spaltschwelle}} behindert.

Spaltung

miniatur|hochkant=3|zentriert|Stabilitätsbetrachtung bezüglich spontaner Spaltung

Coulombenergie
nimmt ab.
Oberflächenenergie
nimmt zu.

Stabilitätsbedingung gegenüber spontaner Spaltung: größere Zunahme der Oberflächenenergie als Abnahme der Coulombenergie.

Rechnung:

Für Spaltschwelle:


miniatur|hochkant=3|zentriert|Spaltschwelle


Neutroneninduzierte Spaltung bei Uran durch freiwerdende Bindungsenergie{{#set:Fachbegriff=Bindungsenergie|Index=Bindungsenergie}} bei Neutroneneinfang{{#set:Fachbegriff=Neutroneneinfang|Index=Neutroneneinfang}}. Für thermische Neutronen{{#set:Fachbegriff=thermische Neutronen|Index=thermische Neutronen}} ist diese Bindungsenergie

bei

bei

Die fehlende Paarungsenergie{{#set:Fachbegriff=Paarungsenergie|Index=Paarungsenergie}} bei bedingt die niedrigere Bindungsenergie, so daß bei der Einbau thermischer Neutronen nicht zur Überwindung der Spaltschwelle ausreicht.


Allgemein Spaltprozeß:


Spaltbruchstücke X und Y instabil wegen Neutronenüberschuß, -Zerfall, z.B.

miniatur|hochkant=3|zentriert|instabile Spaltbruchstücke

Grobe Abschätzung für -Verbrauch:

Fusion

Bei sehr leichten Kernen Durchtunneln des Coulombwalls{{#set:Fachbegriff=Coulombwalls|Index=Coulombwalls}} oberhalb von möglich (z.B. Sonneninnere mit und ).

Kontrollierte Fusion mit Deuterium und Trithium

siehe auch

http://de.wikipedia.org/wiki/Bethe-Weizs%C3%A4cker-Formel miniatur miniatur miniatur

  1. Weizsäcker Z. Phys. 96, 431 (1935)
  2. (Seeger Nucl. Phys. 25, 1(1961)