Nakajima-Zwanzig-Gleichung: Difference between revisions

From testwiki
Jump to navigation Jump to search
Line 3: Line 3:
==Herleitung==
==Herleitung==
Beginnend mit der {{FB|Liouville von Neumann Gleichung }}
Beginnend mit der {{FB|Liouville von Neumann Gleichung }}
:<math>{{d}_{t}}\chi =L \chi </math>
:<math>{{d}_{t}}\chi = L \chi </math>
wobei der {{FB|Dichteoperator}} durch den {{FB|Projektionsoperator}}
wobei der {{FB|Dichteoperator}} durch den {{FB|Projektionsoperator}}
<math>\mathcal{P}</math>
<math>\mathcal{P}</math>
Line 39: Line 39:


Unter der Annahme, dass der inhomogene Term verschwindet, (dies kann man machen wenn man annimmt der irrelevante Anteil der Dichtematrix zum Startzeitpunkt als 0 Definiert wird.) und der Abkürzung  
Unter der Annahme, dass der inhomogene Term verschwindet, (dies kann man machen wenn man annimmt der irrelevante Anteil der Dichtematrix zum Startzeitpunkt als 0 Definiert wird.) und der Abkürzung  
:<math>\mathcal{K}\left( t \right)=\mathcal{P}L{{e}^{\mathcal{Q}Lt}}\mathcal{Q}L\mathcal{P} </math>
:<math>\mathcal{K}\left( t \right)=\mathcal{P}L{{e}^{\mathcal{Q}Lt}}\mathcal{Q}L\mathcal{P} </math>,
<math>\mathcal{P}\chi \equiv {{\chi }_{rel}}</math>
sowie der Ausnutzung von  
sowie der Ausnutzung von  
<math>\mathcal{P}^2=\mathcal{P} </math>
<math>\mathcal{P}^2=\mathcal{P} </math>  
erhält man die endgültige Form
erhält man die endgültige Form
{{Gln|
{{Gln|<math>{{\text{d}}_{t}}{{\chi }_{rel}}=\mathcal{P}L{{\chi }_{rel}}+\int\limits_{0}^{t}{dt'\mathcal{K}({t}'){{\chi }_{rel}}(t-{t}')|}</math>
<math>{{\text{d}}_{t}}\mathcal{P}\chi =\mathcal{P}L\mathcal{P}\chi +\underbrace{\mathcal{P}L{{e}^{\mathcal{Q}Lt}}Q\chi (t=0)}_{=0}+\int\limits_{0}^{t}{dt'\mathcal{K}({t}')\mathcal{P}\chi (t-{t}')|}</math>
|Nakajima-Zwanzig-Gleichung}}
|Nakajima-Zwanzig-Gleichung}}
<math>
\begin{align}
& {{d}_{t}}\left( \begin{matrix}
  \mathcal{P}  \\
  \mathcal{Q}  \\
\end{matrix} \right)\chi =\left( \begin{matrix}
  \mathcal{P}  \\
  \mathcal{Q}  \\
\end{matrix} \right)L\left( \begin{matrix}
  \mathcal{P}  \\
  \mathcal{Q}  \\
\end{matrix} \right)\chi +\left( \begin{matrix}
  \mathcal{P}  \\
  \mathcal{Q}  \\
\end{matrix} \right)L\left( \begin{matrix}
  \mathcal{Q}  \\
  \mathcal{P}  \\
\end{matrix} \right)\chi  \\
& \Rightarrow \mathcal{Q}\chi ={{e}^{\mathcal{Q}Lt}}Q{{\chi }_{0}}+\int '{{e}^{\mathcal{Q}Lt}}\mathcal{Q}L\mathcal{P}\chi (t-{t}') \\
& \Rightarrow {{\text{d}}_{t}}\mathcal{P}\chi =\mathcal{P}L\mathcal{P}\chi +\underbrace{\mathcal{P}{{e}^{\mathcal{Q}Lt}}Q{{\chi }_{0}}}_{=0}+\mathcal{P}L\int '{{e}^{\mathcal{Q}Lt}}\mathcal{Q}L\mathcal{P}\chi (t-{t}') \\
\end{align}
</math>


[[Kategorie:Quantenmechanik]]
[[Kategorie:Quantenmechanik]]

Revision as of 16:09, 9 December 2010

Die Nakajima-Zwangzig Gleichung{{#set:Fachbegriff=Nakajima-Zwangzig Gleichung|Index=Nakajima-Zwangzig Gleichung}} ist eine Integrodifferentialgleichung{{#set:Fachbegriff=Integrodifferentialgleichung|Index=Integrodifferentialgleichung}} die die Zeitentwicklung des relevanten Anteils eine quantenmechanischen Systems beschreibt. Sie wird im Dichteopertorformalismus formuliert und kann als Verallgemeinerung der Mastergleichung{{#set:Fachbegriff=Mastergleichung|Index=Mastergleichung}} angesehen werden.

Herleitung

Beginnend mit der Liouville von Neumann Gleichung {{#set:Fachbegriff=Liouville von Neumann Gleichung |Index=Liouville von Neumann Gleichung }}

dtχ=Lχ

wobei der Dichteoperator{{#set:Fachbegriff=Dichteoperator|Index=Dichteoperator}} durch den Projektionsoperator{{#set:Fachbegriff=Projektionsoperator|Index=Projektionsoperator}} 𝒫 in zwei Anteile χ=(𝒫+𝒬)χ zerlegt wird. Wobei Q folglich durch 𝒬1𝒫 definiert ist.

Die Liouville von Neumann Gleichung kann also durch

dt(𝒫𝒬)χ=(𝒫𝒬)L(𝒫𝒬)χ+(𝒫𝒬)L(𝒬𝒫)χ

dargestellt werden.

Die zweite Zeile wird formal durch

𝒬χ=e𝒬LtQχ(t=0)+0tdte𝒬Lt𝒬L𝒫χ(tt)| gelöst.

Eingesetzt in die erste Gleichung erhält man die Nakajima-Zwanzig-Gleichung:

dt𝒫χ=𝒫L𝒫χ+𝒫Le𝒬LtQχ(t=0)=0+𝒫L0tdte𝒬Lt𝒬L𝒫χ(tt)|

Unter der Annahme, dass der inhomogene Term verschwindet, (dies kann man machen wenn man annimmt der irrelevante Anteil der Dichtematrix zum Startzeitpunkt als 0 Definiert wird.) und der Abkürzung

𝒦(t)=𝒫Le𝒬Lt𝒬L𝒫,

𝒫χχrel sowie der Ausnutzung von 𝒫2=𝒫 erhält man die endgültige Form

dtχrel=𝒫Lχrel+0tdt𝒦(t)χrel(tt)|

{{#set:Gleichung=Nakajima-Zwanzig-Gleichung|Index=Nakajima-Zwanzig-Gleichung}}


Kategorie:Quantenmechanik