Prüfungsfragen:Elektrodynamik: Difference between revisions

From testwiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 10: Line 10:
LAGRANGEFUNKTION für EFLDER
LAGRANGEFUNKTION für EFLDER
==Maxwell Gleichungen==
==Maxwell Gleichungen==
aufschreiben
* herleitung der WelelGleichungen
* herleitung der WelelGleichungen
*Integralsätze
*Integralsätze
*herleitung der felder
*herleitung E
*inhomogene Wellengelichung streuung am Objetzt
---quantenmechanisch? Ansatz mit Lippmann Schwinger Gleichung Bornsche Näherung...
*herleitung durch LAgrange
*herleitung durch LAgrange
Lagrange aufstellen in Analogie zur Felenergie nach den Potentialen Ableiten Lagrange Gl 2 Art geben dann MWGL
Lagrange aufstellen in Analogie zur Felenergie nach den Potentialen Ableiten Lagrange Gl 2 Art geben dann MWGL
*Polariationsdichte
*Materiegleichungen: was ist Polarisation?  
*Materiegleichungen: was ist Polarisation?  
Wie kann man sie mikrosokopisch berechen (z.B Oszillatormodell)
Wie kann man sie mikrosokopisch berechen (z.B Oszillatormodell)
Weg zur Makroskopischen Maxwwellgleichung
Weg zur Makroskopischen Maxwwellgleichung
Line 27: Line 34:
* was ist -j*E Herleitung über Lorentzkraftdichte
* was ist -j*E Herleitung über Lorentzkraftdichte
Siehe [http://de.wikipedia.org/wiki/Satz_von_Poynting]
Siehe [http://de.wikipedia.org/wiki/Satz_von_Poynting]
*Proportionalität zwischen S und w
==Potentiale==
==Potentiale==
'''Zusammenhang mit Feldern'''
'''Zusammenhang mit Feldern'''
Line 34: Line 42:
*retardierte Potentiale
*retardierte Potentiale
==Felder==
==Felder==
*Lösung der Felder MWGLn
*Zerlegung E Feld in ebene Wellen
*Zerlegung E Feld in ebene Wellen
*Kann E-Feld in longitudinale und transversale Komponente zerlegt werden?
*Kann E-Feld in longitudinale und transversale Komponente zerlegt werden?
Line 40: Line 49:


==Grenzbedingungen an Leitern==
==Grenzbedingungen an Leitern==
2
*Welche Annahme macht man damit der Mittelwertsatz angewand werden darf?
*Welche Annahme macht man damit der Mittelwertsatz angewand werden darf?
-->Felder bleiben gleich
-->Felder bleiben gleich
Line 58: Line 68:
*was wird für ferquenzen angenommen bei annahme das felder im inneren verschwinden--> kleine Frequenezen da verschwindende Felder eine Annahme aus der Statik ist -->Helmholtzgleichung hinschreiben    <math>\nabla^2 A + k^2 A = 0</math> where ∇2 is the Laplacian, k is the wavenumber, and A is the amplitude.
*was wird für ferquenzen angenommen bei annahme das felder im inneren verschwinden--> kleine Frequenezen da verschwindende Felder eine Annahme aus der Statik ist -->Helmholtzgleichung hinschreiben    <math>\nabla^2 A + k^2 A = 0</math> where ∇2 is the Laplacian, k is the wavenumber, and A is the amplitude.
===Eichungen===
===Eichungen===
*retardierte Potentiale
Vektorpotential in Coulombeichung
*Lorentzeichung: transversalanteil der Stromdichte
*Welche Eichungen gibt es? 2
*Welche Eichungen gibt es? 2
Lorentz, Coulomb 2 allgemein    \vec E = - \frac{\partial\vec A}{\partial t} - \operatorname{grad}\,\, \phi
Lorentz, Coulomb 2 allgemein    \vec E = - \frac{\partial\vec A}{\partial t} - \operatorname{grad}\,\, \phi
Line 65: Line 78:
     \vec B = \operatorname{rot}\,\, \vec A
     \vec B = \operatorname{rot}\,\, \vec A


 
*Lorentzeichung zur retardierten Potentialen
*aus Eichungen folgend verschiedene Gleichungen für Potentiale 2,
*aus Eichungen folgend verschiedene Gleichungen für Potentiale 2,
* welche Lösungen haben die Potentiale darin
* welche Lösungen haben die Potentiale darin
Line 102: Line 115:
*f retardierte Potentiale
*f retardierte Potentiale
===statisch===
===statisch===
*wie geht's 3
*wie geht's 4
starte bei el Potential <math>\phi(r) = \int d^3r' \frac{\rho(r')}{\left|r-r'\right|}</math> Entwicklung von <math>\frac{1}{\left|r-r'\right|}</math> nach kleinen r', da weit genug von Quelle entfernt
starte bei el Potential <math>\phi(r) = \int d^3r' \frac{\rho(r')}{\left|r-r'\right|}</math> Entwicklung von <math>\frac{1}{\left|r-r'\right|}</math> nach kleinen r', da weit genug von Quelle entfernt


Line 112: Line 125:
3. Quadrupolmoment  
3. Quadrupolmoment  
===dynamisch==
===dynamisch==
*herleitung 2
*herleitung 3
retardiertes Vektorpotential hingeschrieben und Näherungen erklärt (Nenner und Argument bei j) 1. Term entsprocht der elektrischen Dipolstrahlung hingeschieben:
retardiertes Vektorpotential hingeschrieben und Näherungen erklärt (Nenner und Argument bei j) 1. Term entsprocht der elektrischen Dipolstrahlung hingeschieben:


Line 119: Line 132:
==relativistische Elektrodynamik=
==relativistische Elektrodynamik=
*was ist besonder? -->E+B->FTENSOR
*was ist besonder? -->E+B->FTENSOR
==Rayleighstreuung==
?? http://de.wikipedia.org/wiki/Rayleigh-Streuung
*mathematische Beschreibung der R-Streung
*herleitung aus bewegungsgleichungen von gebundenen ladungen
*wie sieht der STreuquerschnitt aus --> \sigma ~ k^4 = (\omega/c)^4
*phys. interpretation --> blaues licht wird stärker gestreut als rotes -->himmelblau

Revision as of 13:09, 8 September 2010

ultrakurzer lichtblitz-> Gaußsches Wellenpaket ψ(x,t)=c(k)ei(ωtkx)dk. mit c(k)=e(kk0)2(2/a)2 ergibt \psi(x,0)=(2πa2)1/4ex2/a2eik0x.

beziehung zwischen Orts und Impulsraum -> unendlich schaft im Ortsraum -> beleibig unschaft im Impulsraum vici versa FT?


Dispersionsrelation in Optik und Quantenmechanik--> Allgemein Beziehung zwischen der Kreisfrequenz ω und der Kreiswellenzahl k ω = f(k). Optik Brechzahlen Lich im Medium k=ωvphase=n(ω)ωc0 in der Optik zerfließen Wellenpakete im Vakuum nicht

Teilchenphysik Energie Impuls beziehung ω=E=p22m=2k22m (QM Wellenpaket zerfießt (anschaulich: Aufenthaltswahrscheinlichkeit wird geringer das Teilchen an einem festen Ort zu finden))

LAGRANGEFUNKTION für EFLDER

Maxwell Gleichungen

aufschreiben

  • herleitung der WelelGleichungen
  • Integralsätze
  • herleitung der felder
  • herleitung E
  • inhomogene Wellengelichung streuung am Objetzt

---quantenmechanisch? Ansatz mit Lippmann Schwinger Gleichung Bornsche Näherung...

  • herleitung durch LAgrange

Lagrange aufstellen in Analogie zur Felenergie nach den Potentialen Ableiten Lagrange Gl 2 Art geben dann MWGL

  • Polariationsdichte
  • Materiegleichungen: was ist Polarisation?

Wie kann man sie mikrosokopisch berechen (z.B Oszillatormodell) Weg zur Makroskopischen Maxwwellgleichung Mittelungsfunktion--> Entwicklung der Mittelungsfunktion

Poissiongleichung

  • Lösung der statischen Poissiongleichung

Pointingtheorem

  • elektromagnetische Feldenergie
  • hinschreiben
  • größen erklären
  • Herleitung zkizzieren (aus Maxwell Gleichungen)
  • was ist -j*E Herleitung über Lorentzkraftdichte

Siehe [1]

  • Proportionalität zwischen S und w

Potentiale

Zusammenhang mit Feldern V(\mathbf r) = m \cdot \Phi (\mathbf r) \quad \text{bzw.} \quad V(\mathbf r) = q \cdot \Phi (\mathbf r).

  • Definition
  • Potentialgleichungen 2
  • retardierte Potentiale

Felder

  • Lösung der Felder MWGLn
  • Zerlegung E Feld in ebene Wellen
  • Kann E-Feld in longitudinale und transversale Komponente zerlegt werden?
  • Wozu macht man das?
  • Felder an Oberflächen

Grenzbedingungen an Leitern

2

  • Welche Annahme macht man damit der Mittelwertsatz angewand werden darf?

-->Felder bleiben gleich

  • brechung und reflexion
  • fresnelsche formeln http://de.wikipedia.org/wiki/Fresnelsche_Formeln
  • Grenzbedingungen für Felder
  • Springt die Normalenkomponente des D-Feldes bei Dielektroikum auch? --> nein Flächenladungsdichte ist null
  • Randbedingungen für EM Feld
  • Stetigkeitsbedingungen an Leitenden und nichtleitenden Grenzflächen 2
  • Randbedingungen im Dielektrikum

(Stetigkeitsbedingungen n sei Flächennormale n.B=0 nxE=0 n.D=0 und die letze MW Gln. nxH=0 bei Metall Ladungs und Stromdichten in D,H

  • wie kommt man auf n.B=0

Maxwellgln in Integralschreibweise \int df n .B= 0

  • Was hat eine endliche Flächenladungsdichte (ungleich 0)-->Metalle
  • Randbeingungne für den perfekten Leiter
  • was ist der perfekte Leiter
  • was wird für ferquenzen angenommen bei annahme das felder im inneren verschwinden--> kleine Frequenezen da verschwindende Felder eine Annahme aus der Statik ist -->Helmholtzgleichung hinschreiben 2A+k2A=0 where ∇2 is the Laplacian, k is the wavenumber, and A is the amplitude.

Eichungen

  • retardierte Potentiale

Vektorpotential in Coulombeichung

  • Lorentzeichung: transversalanteil der Stromdichte
  • Welche Eichungen gibt es? 2

Lorentz, Coulomb 2 allgemein \vec E = - \frac{\partial\vec A}{\partial t} - \operatorname{grad}\,\, \phi

und im magnetischen Feld

   \vec B = \operatorname{rot}\,\, \vec A
  • Lorentzeichung zur retardierten Potentialen
  • aus Eichungen folgend verschiedene Gleichungen für Potentiale 2,
  • welche Lösungen haben die Potentiale darin
  • wie sehen diese in Coulombeichung aus

-->Coulomb-Eichung (auch Strahlungseichung oder transversale Eichung) {\rm div} \mathbf A (\mathbf r,t)=0 Die Lösung für das skalare Potential \phi(\mathbf r,t) entspricht im Falle der Coulomb-Eichung dem Coulomb-Potential, welches das Potential einer elektrostatischen Ladungsverteilung beschreibt E(r,t)=gradϕ(r,t)A(r,t)t. A(r)=14πVv(r)|rr|d3r http://de.wikipedia.org/wiki/Coulombeichung

  • Was folgt für die Retardierung der Potentiale
  • Warum braucht beim Coulombpotential das Sklarpotential keine Retardierung

(Nur die Felder sind die phys. relevanten Größen; wird durch retardierung im Vektorpotential wieder "gut" gemacht.)

  • wo bleibt die Zeitabhängigkeit beim skalaren Potential in Coulombeichung

--> Diese ist schon drin, jedoch wird nach dieser nicht differenziert --> keine Retardierung, jedoc sind die Felder physikalsicher relevant, beim E-Feld gibt es einen Anteuil vom Vektorpotential, der die Retardierung hereinbringt.

Beugung am Spalt

2 (Wellenlänge muss in der Grössenordnung der Spaltgrösse sein

  • Berechnung der Wellenlänge (mathematisch)

einfallende Welle trifft auf Spalt

entstehung von Kugelwellen die interferrieren

math

Greensche Gleichungen Das Potential in einem Volumen wird durch das Potential am Rand bestimmt

  • Bornsche Näherung?

In nullter Näherung rechnet man direkt mit dem eingestrahltem Feld

Wellenleitung

  • Wellenleiter, Resonatoren: Aufteilung in transversalen und longitudinalen Anteil


Multipolentwicklung

  • ideen 2

(Entfernung zu Quelle groß)

  • benennung der einzelnen Terme
  • f retardierte Potentiale

statisch

  • wie geht's 4

starte bei el Potential ϕ(r)=d3rρ(r)|rr| Entwicklung von 1|rr| nach kleinen r', da weit genug von Quelle entfernt

1|rr|=1|r|rr|rr|3+</math>

1. Term Monopolmoment wie Punktladung

2. Term Dipolmoment 3. Quadrupolmoment

=dynamisch

  • herleitung 3

retardiertes Vektorpotential hingeschrieben und Näherungen erklärt (Nenner und Argument bei j) 1. Term entsprocht der elektrischen Dipolstrahlung hingeschieben:

Retardierung Dipoltherm

=relativistische Elektrodynamik

  • was ist besonder? -->E+B->FTENSOR


Rayleighstreuung

?? http://de.wikipedia.org/wiki/Rayleigh-Streuung

  • mathematische Beschreibung der R-Streung
  • herleitung aus bewegungsgleichungen von gebundenen ladungen
  • wie sieht der STreuquerschnitt aus --> \sigma ~ k^4 = (\omega/c)^4
  • phys. interpretation --> blaues licht wird stärker gestreut als rotes -->himmelblau