Lösungen der Dirac-Gleichung (freies Teilchen): Difference between revisions

From testwiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 5: Line 5:
: <math>\left( \mathfrak{i} {{\gamma }^{\mu }}{{\partial }_{\mu }}-m \right)\Psi =0\Leftrightarrow \left[ \mathfrak{i} \left( {{\gamma }^{0}}{{\partial }_{t}}+{{\gamma }^{1}}{{\partial }_{{{x}^{1}}}}+{{\gamma }^{2}}{{\partial }_{{{x}^{2}}}}+{{\gamma }^{3}}{{\partial }_{{{x}^{3}}}} \right)-m \right]\Psi =0</math>
: <math>\left( \mathfrak{i} {{\gamma }^{\mu }}{{\partial }_{\mu }}-m \right)\Psi =0\Leftrightarrow \left[ \mathfrak{i} \left( {{\gamma }^{0}}{{\partial }_{t}}+{{\gamma }^{1}}{{\partial }_{{{x}^{1}}}}+{{\gamma }^{2}}{{\partial }_{{{x}^{2}}}}+{{\gamma }^{3}}{{\partial }_{{{x}^{3}}}} \right)-m \right]\Psi =0</math>


a) {{FB|Separationsansatz}} <math>\Psi \left( \underline{x},t \right)={{e}^{-\mathfrak{i} Et}}\phi \left( {\underline{x}} \right)</math>
=={{FB|Separationsansatz}} ==
<math>\Psi \left( \underline{x},t \right)={{e}^{-\mathfrak{i} Et}}\phi \left( {\underline{x}} \right)</math>
{{NumBlk|:|
{{NumBlk|:|


Line 53: Line 54:




== Diskussion ==
=== Diskussion ===


* <math>{{\Psi }_{+}}={{e}^{-\mathfrak{i} Et}}\left( \begin{align}
* <math>{{\Psi }_{+}}={{e}^{-\mathfrak{i} Et}}\left( \begin{align}
Line 120: Line 121:
&rarr; konsistente Lösung dieses Problems in der zweiten Quantisierung (letzer Teil VL): <math>\Psi </math> als Feld, das quantisiert wird.
&rarr; konsistente Lösung dieses Problems in der zweiten Quantisierung (letzer Teil VL): <math>\Psi </math> als Feld, das quantisiert wird.


b) Laufenden ebene Wellen („laufende, nicht ruhende Teilchen“)
==Laufenden ebene Wellen==
'''(„laufende, nicht ruhende Teilchen“)'''
 
Ansatz<math>{{\Psi }_{\pm }}={{e}^{\mp \left( Et-\underline{k}.\underline{x} \right)}}{{\phi }_{\pm }}\left( E,\underline{k} \right),\quad E=+\sqrt{{{k}^{2}}+{{m}^{2}}}>0</math> mit <math>{{k}_{\mu }}{{x}^{\mu }}:=Et-\underline{k}.\underline{x}\Rightarrow {{k}_{\mu }}=\left( E,-{{k}_{x}},-{{k}_{y}},-{{k}_{z}} \right)</math>
Ansatz<math>{{\Psi }_{\pm }}={{e}^{\mp \left( Et-\underline{k}.\underline{x} \right)}}{{\phi }_{\pm }}\left( E,\underline{k} \right),\quad E=+\sqrt{{{k}^{2}}+{{m}^{2}}}>0</math> mit <math>{{k}_{\mu }}{{x}^{\mu }}:=Et-\underline{k}.\underline{x}\Rightarrow {{k}_{\mu }}=\left( E,-{{k}_{x}},-{{k}_{y}},-{{k}_{z}} \right)</math>



Revision as of 12:31, 6 September 2010

{{#set:Urheber=Prof. Dr. T. Brandes|Inhaltstyp=Script|Kapitel=1|Abschnitt=7}} Kategorie:Quantenmechanik __SHOWFACTBOX__


Wir starten von

(iγμμm)Ψ=0[i(γ0t+γ1x1+γ2x2+γ3x3)m]Ψ=0

Separationsansatz{{#set:Fachbegriff=Separationsansatz|Index=Separationsansatz}}

Ψ(x_,t)=eiEtϕ(x_)

[Eγ0+i(γ11+γ22+γ33)m]ϕ(x_)=0

     (1.66)


Ansatz ϕ(x_)=ϕ=const(Eγ0m)ϕ=0 (Eigenwertgleichung)

γ0ϕ=mEϕ(1111)ϕ=mEϕ
(hat 2 Eigenwerte)

mE=+1ϕ+=(u1u200)undmE=1ϕ=(00u1u2)

     (1.67)


Diskussion

  • Ψ+=eiEt(u1u200),E=+mc2, zwei linear unabhängige Lösungen beschreibt ruhendes Teilchen der Masse m, Ruheenergie E=mc2>0
  • Zwei Komponenten u1, u2 beschreiben Spin - ½, z.B.

(u1u2)=(10)=|(u1u2)=(01)=|

     (1.68)
→ Dirac-Gleichung beschreibt Spin- ½ Teilchen.
Ψ=eiEt(00u1u2),E=mc2zwei linear unabhängige Lösungen      (1.69)
hat aber negative Energie! Interpretationsproblem wie Klein-Gordon-Gleichung. Zufriedenstellend gelöst erst in der Quantenfeldtheorie (Teilchenerzeugung und Vernichtung).


„Anschauliche Interpretation“

  • Annahme vieler gleichartiger Spin- ½ -Teilchen der Masse m
  • Annahme: Es gibt einen Vielteilchen-Grundzustand („Vakuumzustand{{#set:Fachbegriff=Vakuumzustand|Index=Vakuumzustand}}“), in dem alle Einzelteilchenzustände Ψbesetzt sind.
  • Ein einziges Elektron ist dann z.B. das Vakuum +1 Teilchen in einem Zustand Ψ+.
  • Teilchen-Loch{{#set:Fachbegriff=Teilchen-Loch|Index=Teilchen-Loch}}“ Anregung: Anregung von Ψ+ nach Ψ lässt „Loch“ im „Fermi-See{{#set:Fachbegriff=Fermi-See|Index=Fermi-See}}“ zurück: dies hat positive Ladung (fehlende negative Ladung)
  • nützliches Konzept für die Halbleiterphysik

Vorteile der Löcher-Theorie:

  • Vorrausage des Positron{{#set:Fachbegriff=Positron|Index=Positron}} (Antiteilchen zum Elektron, gleiche Masse, entgegengesetzte Ladung)
  • Paarvernichtung / Erzeugung

Nachteile der Löcher-Theorie:

  • Unendlicher See nicht beobachteter Elektronen
  • Beruht auf „Paul-Prinzip“ und funktionier bei der Klein-Gordon-Gleichung, die Bosonen mit Spin 0 beschreibt nicht.

→ konsistente Lösung dieses Problems in der zweiten Quantisierung (letzer Teil VL): Ψ als Feld, das quantisiert wird.

Laufenden ebene Wellen

(„laufende, nicht ruhende Teilchen“)

AnsatzΨ±=e(Etk_.x_)ϕ±(E,k_),E=+k2+m2>0 mit kμxμ:=Etk_.x_kμ=(E,kx,ky,kz)

(γ0Eγ1kxγ2kyγ3kzm)ϕ+=0(γμkμm)ϕ+=0(γ0E+γ1kx+γ2ky+γ3kzm)ϕ=0(γμkμ+m)ϕ=0

     (1.70)


(1.70) sind Gleichundgen für Spinoren (4-Komponentige Vektoren)ϕ±.

Lösung wie Matrixgleichung M__x_=0möglich, einfacher Trick:

(γμkμm)(γνkν+m)=γμkμγνkνm2=E2k2m2=0,mit(γμ)2=±1,E2=k2+m2,=c=1

(γμkμm)(γνkν+m)(u1u200)ϕ~+=0

ϕ~+=(E+m)(u1u200)kx(0σxσx0)(u1u200)ky...=((E+m)(u1u2)k_.σ_(u1u2))


(γμkμm)(γνkν+m)(00u1u2)ϕ~=0

ϕ~=(E+m)(u1u200)kx(0σxσx0)(u1u200)ky...=(k_.σ_(u1u2)(E+m)(u1u2))

   (1.71)

Insgesamt existieren also 4 linear unabhängige Lösungen mit der Basis

ϕ+(1)=N((E+m)u_(1)(k_.σ_)u_(1))ϕ+(2)=N((E+m)u_(2)(k_.σ_)u_(2))ϕ(1)=N((k_.σ_)u_(1)(E+m)u_(1))ϕ(2)=N((k_.σ_)u_(2)(E+m)u_(2))

     (1.72)


AUFGABE: Bestimme Normierungsfaktor N so, dass |ϕ±(i)|2=1 Zeige ϕ±(1)ϕ±(2) aberϕ+(1) NOT ϕ(1) Hierbei gilt u_(1)u_(2),|u_(i)|=1