Klein Gordon Gleichung: Difference between revisions

From testwiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 13: Line 13:
wobei d die Raumdimension angibt.
wobei d die Raumdimension angibt.


{{NumBlk|:|Nach Schrödinger (nicht relativistisch)
Nach Schrödinger (nicht relativistisch
{{NumBlk|:|)


<math>\omega \left( \underline{k} \right)=\frac{{{k}^{2}}}{2m}\quad \text{mit }\hbar =1</math>
<math>\omega \left( \underline{k} \right)=\frac{{{k}^{2}}}{2m}\quad \text{mit }\hbar =1</math>
Line 45: Line 46:
: |(1.5)|Border=1}}
: |(1.5)|Border=1}}


Es gilt die <font color="#FFFF00">'''''(AUFGABE)'''''</FONT>
Es gilt die <font color="#3399FF">'''''(AUFGABE)'''''</FONT>


{{NumBlk|:|Kontinuitätsgleichung{{FB|Kontinuitätsgleichung}}
{{NumBlk|:|{{FB|Kontinuitätsgleichung}}


<math>{{\partial }_{t}}\rho +\nabla .\underline{j}=0</math>
<math>{{\partial }_{t}}\rho +\nabla .\underline{j}=0</math>
Line 70: Line 71:


Allerdings gilt
Allerdings gilt
<math>\begin{align}
:<math>\begin{align}


& \int{\rho \left( \underline{x},t \right){{d}^{d}}\underline{x}}={{\left( \frac{1}{2\pi } \right)}^{d}}\frac{1}{m}\int{\int{\int{{{\varphi }^{*}}\left( {\underline{k}} \right)\varphi \left( {{\underline{k}}'} \right){{e}^{i\left( \underline{k}-{\underline{k}}' \right)\underline{x}}}\omega \left( {{\underline{k}}'} \right){{d}^{d}}x}{{d}^{d}}k}{{d}^{d}}{k}'} \\
& \int{\rho \left( \underline{x},t \right){{d}^{d}}\underline{x}}={{\left( \frac{1}{2\pi } \right)}^{d}}\frac{1}{m}\int{\int{\int{{{\varphi }^{*}}\left( {\underline{k}} \right)\varphi \left( {{\underline{k}}'} \right){{e}^{i\left( \underline{k}-{\underline{k}}' \right)\underline{x}}}\omega \left( {{\underline{k}}'} \right){{d}^{d}}x}{{d}^{d}}k}{{d}^{d}}{k}'} \\
Line 84: Line 85:
<math>\left( \square +\frac{{{m}^{2}}{{c}^{2}}}{{{\hbar }^{2}}} \right)\Psi =0</math>
<math>\left( \square +\frac{{{m}^{2}}{{c}^{2}}}{{{\hbar }^{2}}} \right)\Psi =0</math>
: |(1.8)}}
: |(1.8)}}
mit <math>\frac{\hbar }{mc}</math>der <u>Compton-Wellenlänge{{FB|Compton-Wellenlänge}}</u> als charakteristische Längenskala.
mit <math>\frac{\hbar }{mc}</math>der {{FB|Compton-Wellenlänge}} als charakteristische Längenskala.
Hier ist <math>\square ={{\partial }_{\mu }}{{\partial }^{\mu }}={{c}^{-2}}\partial _{t}^{2}-\Delta </math> der d’Alambert-Operator{{FB|d’Alambert-Operator}}.
Hier ist <math>\square ={{\partial }_{\mu }}{{\partial }^{\mu }}={{c}^{-2}}\partial _{t}^{2}-\Delta </math> der {{FB|d’Alambert-Operator}}.


==Literatur==
==Literatur==
<FONT COLOR="#FFBF00">'''LITERATUR: SKRIPT FREDENHAGEN QMII, HAMBURG'''</FONT>
<FONT COLOR="#FFBF00">'''LITERATUR: SKRIPT FREDENHAGEN QMII, HAMBURG'''</FONT>

Revision as of 12:00, 5 September 2010

{{#set:Urheber=Brandes|Inhaltstyp=Script|Kapitel=1|Abschnitt=1}} Kategorie:Quantenmechanik __SHOWFACTBOX__



Ein quantenmechanisches Wellenpaket{{#set:Fachbegriff=Wellenpaket|Index=Wellenpaket}} hat die Form

Ψ(x_,t)=(2π)d2φ(k_)eiω(k_)t+ik_.x_ddk_

     ((1.1))


wobei d die Raumdimension angibt.

Nach Schrödinger (nicht relativistisch

)

ω(k_)=k22mmit =1

     ((1.2))


was auf die Schrödingergleichung{{#set:Fachbegriff=Schrödingergleichung|Index=Schrödingergleichung}}

itΨ=H^Ψ,H^=Δ2m

     ((1.3))


führt.

Relativistisch (SRT) gilt

ω(k_)=k_2+m2      ((1.4))


wegen E=m2c4+p_2c2 und p_=k.

Ab jetzt gilt c=1.

Mit (1.4) erfüllt Ψ jetzt die Klein-Gordon-Gleichung{{#set:Fachbegriff=Klein-Gordon-Gleichung|Index=Klein-Gordon-Gleichung}}:

Klein-Gordon-Gleichung

(t2Δ+m2)Ψ(x_,t)=0

     ((1.5))


Es gilt die (AUFGABE)

Kontinuitätsgleichung{{#set:Fachbegriff=Kontinuitätsgleichung|Index=Kontinuitätsgleichung}}

tρ+.j_=0

     ((1.6))


mit

j_=12im(Ψ*ΨΨΨ*)ρ12m(Ψ*tΨΨtΨ*)

     ((1.7))


Dabei ist die Stromdichte (j_) wie in der Schrödingergleichung; allerdings ist ρ im allgemeinen nicht positiv!

Allerdings gilt

ρ(x_,t)ddx_=(12π)d1mφ*(k_)φ(k_)ei(k_k_)x_ω(k_)ddxddkddk=1mω(k_)|φ(k_)|2ddk_>0 fürω(k_)>0.

Diskurssion:

  • Klein-Gordon-Gleichung ist eine hyperbolische Differentialgeleichung wie die Wellengleichung(t2Δ)Ψ=0.
  • Auch ein Wellenpaket mit ω(k_)=k_2+m2erfüllt die Klein-Gordon-Gleichung jedoch stellt dies ein Interpretationsproblem dar, da es sich um Teilchen mit negativer Energie handeln müsste.
  • Klein-Gordon-Gleichung ist eine Differentialgleichung zweiter Ordnung von t und somit ist das dazugehörige Anfangswertproblem (Ψ(t=0)Ψ(t>0)) nur lösbar bei zusätzlicher Angabe vontΨ|t=0.
  • Schreibweise

(+m2c22)Ψ=0

     ((1.8))

mit mcder Compton-Wellenlänge{{#set:Fachbegriff=Compton-Wellenlänge|Index=Compton-Wellenlänge}} als charakteristische Längenskala. Hier ist =μμ=c2t2Δ der d’Alambert-Operator{{#set:Fachbegriff=d’Alambert-Operator|Index=d’Alambert-Operator}}.

Literatur

LITERATUR: SKRIPT FREDENHAGEN QMII, HAMBURG