Klassisch- mechanische Gleichgewichtsverteilungen: Difference between revisions

From testwiki
Jump to navigation Jump to search
*>SchuBot
m Pfeile einfügen, replaced: -> → →
*>SchuBot
m Interpunktion, replaced: ! → ! (12), ( → ( (4)
Line 2: Line 2:




Anwendung des Prinzips der vorurteilsfreien Schätzung auf ein klassisch- mechanisches System von N Teilchen ( z.B. Moleküle eines Gases, 3N freiheitsgrade)
Anwendung des Prinzips der vorurteilsfreien Schätzung auf ein klassisch- mechanisches System von N Teilchen (z.B. Moleküle eines Gases, 3N freiheitsgrade)


<u>'''Voraussetzung'''</u>
<u>'''Voraussetzung'''</u>
Line 12: Line 12:


{{FB|Liouville- Theorem}}
{{FB|Liouville- Theorem}}
  - notwendige, aber nicht hinreichende Bedingung !
  - notwendige, aber nicht hinreichende Bedingung!


'''Hamiltonfunktion'''
'''Hamiltonfunktion'''
Line 32: Line 32:
:<math>\xi (t)</math>
:<math>\xi (t)</math>


als Trajektorie im Phasneraum <math>\Gamma </math>( bei euklidischer metrik) gegeben durch das 6N- dimensionale  Vektorfeld
als Trajektorie im Phasneraum <math>\Gamma </math>(bei euklidischer metrik) gegeben durch das 6N- dimensionale  Vektorfeld


:<math>\dot{\xi }\equiv \left( \frac{\partial H\left( \xi  \right)}{\partial {{p}_{1}}},\frac{\partial H\left( \xi  \right)}{\partial {{p}_{2}}},...,\frac{\partial H\left( \xi  \right)}{\partial {{p}_{3N}}},\frac{\partial H\left( \xi  \right)}{\partial \acute{\ }{{q}_{1}}},...,\frac{\partial H\left( \xi  \right)}{\partial {{q}_{3N}}} \right)</math>
:<math>\dot{\xi }\equiv \left( \frac{\partial H\left( \xi  \right)}{\partial {{p}_{1}}},\frac{\partial H\left( \xi  \right)}{\partial {{p}_{2}}},...,\frac{\partial H\left( \xi  \right)}{\partial {{p}_{3N}}},\frac{\partial H\left( \xi  \right)}{\partial \acute{\ }{{q}_{1}}},...,\frac{\partial H\left( \xi  \right)}{\partial {{q}_{3N}}} \right)</math>
Line 74: Line 74:
{{Def|Theorem von Liouville:
{{Def|Theorem von Liouville:


Die Dichte der Phasenraumpunkte ändert sich nicht im bewegten System !
Die Dichte der Phasenraumpunkte ändert sich nicht im bewegten System!


Phasenfluss → inkompressible Flüssigkeit
Phasenfluss → inkompressible Flüssigkeit
Line 80: Line 80:
Phasenvolumina im <math>\Gamma </math>
Phasenvolumina im <math>\Gamma </math>


- Raum sind invariant !|Theorem von Liouville}}
- Raum sind invariant!|Theorem von Liouville}}


Aber: Verformung ist natürlich zulässig !! <math>\begin{align}
Aber: Verformung ist natürlich zulässig!! <math>\begin{align}


& \frac{\partial \rho \left( \xi ,t \right)}{\partial t}+div\left( \rho \dot{\xi } \right)=\frac{\partial \rho \left( \xi ,t \right)}{\partial t}+\sum\limits_{k=1}^{3N}{{}}\left( \frac{\partial \rho \left( \xi ,t \right)}{\partial {{q}_{k}}}{{{\dot{q}}}_{k}}+\frac{\partial \rho \left( \xi ,t \right)}{\partial {{p}_{k}}}{{{\dot{p}}}_{k}} \right)+\rho div\dot{\xi } \\
& \frac{\partial \rho \left( \xi ,t \right)}{\partial t}+div\left( \rho \dot{\xi } \right)=\frac{\partial \rho \left( \xi ,t \right)}{\partial t}+\sum\limits_{k=1}^{3N}{{}}\left( \frac{\partial \rho \left( \xi ,t \right)}{\partial {{q}_{k}}}{{{\dot{q}}}_{k}}+\frac{\partial \rho \left( \xi ,t \right)}{\partial {{p}_{k}}}{{{\dot{p}}}_{k}} \right)+\rho div\dot{\xi } \\
Line 96: Line 96:
Die Metrik in <math>\Gamma </math>
Die Metrik in <math>\Gamma </math>


kann so gewählt werden, dass gleiche Phasenvolumina gleiche a-priori Wahrscheinlichkeiten haben und für alle Zeiten behalten .
kann so gewählt werden, dass gleiche Phasenvolumina gleiche a-priori Wahrscheinlichkeiten haben und für alle Zeiten behalten.


'''Nebenbemerkung: '''Gilt nur für kanonische Variablen p,q
'''Nebenbemerkung: '''Gilt nur für kanonische Variablen p,q
Line 112: Line 112:
\end{align}</math>
\end{align}</math>


bei m unabhängigen Observablen !
bei m unabhängigen Observablen!


Ensemble- Mittelwerte ! sind gegeben als Info über den Zustand !
Ensemble- Mittelwerte! sind gegeben als Info über den Zustand!


Das {{FB|Prinzip der vorurteilsfreien Schätzung}} ergibt:
Das {{FB|Prinzip der vorurteilsfreien Schätzung}} ergibt:
Line 122: Line 122:
==Beispiele==
==Beispiele==


Annahme: unterscheidbare Teilchen. Ansonsten kommt noch ein Faktor <math>\frac{1}{N!}</math> rein !
Annahme: unterscheidbare Teilchen. Ansonsten kommt noch ein Faktor <math>\frac{1}{N!}</math> rein!


{{Beispiel|1= 1. <u>'''Kanonische Verteilung'''</u>
{{Beispiel|1= 1. <u>'''Kanonische Verteilung'''</u>
Line 138: Line 138:
:<math>\left\langle {{M}^{1}} \right\rangle =U</math>
:<math>\left\langle {{M}^{1}} \right\rangle =U</math>


innere Energie <-  enthält nicht die makroskopische Bewegung des Systems als Ganzes !
innere Energie <-  enthält nicht die makroskopische Bewegung des Systems als Ganzes!


:<math>Z=\exp \left( -\Psi  \right)=\int_{{{R}^{6N}}}^{{}}{{}}d\xi \exp \left( -\beta H\left( \xi  \right) \right)</math>
:<math>Z=\exp \left( -\Psi  \right)=\int_{{{R}^{6N}}}^{{}}{{}}d\xi \exp \left( -\beta H\left( \xi  \right) \right)</math>


kanonische Zustandssumme ( Partition function)
kanonische Zustandssumme (Partition function)


:<math>\rho \left( \xi  \right)={{Z}^{-1}}\exp \left( -\beta H\left( \xi  \right) \right)</math>
:<math>\rho \left( \xi  \right)={{Z}^{-1}}\exp \left( -\beta H\left( \xi  \right) \right)</math>
Line 148: Line 148:
als Dichteverteilung
als Dichteverteilung


* in der QM: statistischer Operator !
* in der QM: statistischer Operator!
}}
}}
{{Beispiel|1=2. '''Großkanonische Verteilung'''
{{Beispiel|1=2. '''Großkanonische Verteilung'''
Line 196: Line 196:
\end{align}</math>
\end{align}</math>


Als Wahrscheinlichkeit dafür, dass n Teilchen vorhanden sind !
Als Wahrscheinlichkeit dafür, dass n Teilchen vorhanden sind!


= Marginalverteilung von
= Marginalverteilung von
Line 219: Line 219:
{{Beispiel|<u>'''Beispiel'''</u>
{{Beispiel|<u>'''Beispiel'''</u>


Klassisches ideales Gas ( ohne Wechselwirkung):
Klassisches ideales Gas (ohne Wechselwirkung):


:<math>\begin{align}
:<math>\begin{align}

Revision as of 00:52, 13 September 2010


{{#set:Urheber=Prof. Dr. E. Schöll, PhD|Inhaltstyp=Script|Kapitel=2|Abschnitt=2}} Kategorie:Thermodynamik __SHOWFACTBOX__



Anwendung des Prinzips der vorurteilsfreien Schätzung auf ein klassisch- mechanisches System von N Teilchen (z.B. Moleküle eines Gases, 3N freiheitsgrade)

Voraussetzung

gleiche a-priori- Wahrscheinlichkeit der Mirkozustände ξ=(q1...q3N,p1...p3N)Γ Dabei bezeichnet Γ den Phasenraum der kanonisch konjugierten Orte qk und Impulse pk

Begründung

Liouville- Theorem{{#set:Fachbegriff=Liouville- Theorem|Index=Liouville- Theorem}}

- notwendige, aber nicht hinreichende Bedingung!

Hamiltonfunktion

H(ξ)=H(q1...q3N,p1...p3N)

Hamiltonsche Gleichungen:

q˙k=H(ξ)pkp˙k=H(ξ)qk

Lösung:

ξ(t)

als Trajektorie im Phasneraum Γ(bei euklidischer metrik) gegeben durch das 6N- dimensionale Vektorfeld

ξ˙(H(ξ)p1,H(ξ)p2,...,H(ξ)p3N,H(ξ)´q1,...,H(ξ)q3N)

Es gilt:

divξ˙:=k=13N(q˙kqk+p˙kpk)=k=13N(qkH(ξ)pkqkH(ξ)pk)=0

Interpretiert man ρ(ξ)

als Dichte der Phasenpunkte im Phasenraum für ein Ensemble äquivalenter Systeme, so gilt der Erhaltungssatz (Kontinuitätsgleichung{{#set:Fachbegriff=Kontinuitätsgleichung|Index=Kontinuitätsgleichung}}):

ρ(ξ)t+div(ρξ˙)=0

Interpretation:


Dichte des Phasenflusses
ρ(ξ,t)
Geschwindigkeit des Phasenflusses
ξ˙
Stromdichte des Phasenflusses
ρξ˙

Die Änderung der Dichte in dem mit dem Fluss mitbewegten lokalen Koordinatensystem ist:

dρ(ξ,t)dt=ρ(ξ,t)t+k=13N(ρ(ξ,t)qkq˙k+ρ(ξ,t)pkp˙k)

Wegen divξ˙:=k=13N(q˙kqk+p˙kpk)=k=13N(qkH(ξ)pkqkH(ξ)pk)=0

folgt aus der Kontinuitätsgleichung

ρ(ξ,t)t+div(ρξ˙)=ρ(ξ,t)t+k=13N(ρ(ξ,t)qkq˙k+ρ(ξ,t)pkp˙k)+ρdivξ˙ρdivξ˙=0ρ(ξ,t)t+div(ρξ˙)=ρ(ξ,t)t+k=13N(ρ(ξ,t)qkq˙k+ρ(ξ,t)pkp˙k)=dρ(ξ,t)dt=0


Theorem von Liouville:

Die Dichte der Phasenraumpunkte ändert sich nicht im bewegten System!

Phasenfluss → inkompressible Flüssigkeit

Phasenvolumina im Γ

- Raum sind invariant!

{{#set:Definition=Theorem von Liouville|Index=Theorem von Liouville}}


Aber: Verformung ist natürlich zulässig!! ρ(ξ,t)t+div(ρξ˙)=ρ(ξ,t)t+k=13N(ρ(ξ,t)qkq˙k+ρ(ξ,t)pkp˙k)+ρdivξ˙ρdivξ˙=0ρ(ξ,t)t+div(ρξ˙)=ρ(ξ,t)t+k=13N(ρ(ξ,t)qkq˙k+ρ(ξ,t)pkp˙k)=dρ(ξ,t)dt=0

Ergänzung

Die Metrik in Γ

kann so gewählt werden, dass gleiche Phasenvolumina gleiche a-priori Wahrscheinlichkeiten haben und für alle Zeiten behalten.

Nebenbemerkung: Gilt nur für kanonische Variablen p,q

Konstruktion der Gleichgewichtsverteilung

Der thermodynamische Zustand sei gegeben durch Mittelwerte von Phasenraumfunktionen:

Mn=dξρ(ξ)Mn(ξ)n=1,..,m

bei m unabhängigen Observablen!

Ensemble- Mittelwerte! sind gegeben als Info über den Zustand!

Das Prinzip der vorurteilsfreien Schätzung{{#set:Fachbegriff=Prinzip der vorurteilsfreien Schätzung|Index=Prinzip der vorurteilsfreien Schätzung}} ergibt:


ρ(ξ)=exp(ΨλnMn(ξ))


Beispiele

Annahme: unterscheidbare Teilchen. Ansonsten kommt noch ein Faktor 1N! rein!


1. Kanonische Verteilung

m=1:

M1(ξ)=H(ξ)

Hamiltonfunktion als eine Art " Zufallsfunktion"

λ1=β

thermodynamisch konjugierter intensiver Parameter

M1=U

innere Energie <- enthält nicht die makroskopische Bewegung des Systems als Ganzes!

Z=exp(Ψ)=R6Ndξexp(βH(ξ))

kanonische Zustandssumme (Partition function)

ρ(ξ)=Z1exp(βH(ξ))

als Dichteverteilung

  • in der QM: statistischer Operator!


2. Großkanonische Verteilung

m=2:

M2(ξ)=N

Variable Teilchenzahl als Zufallsgröße

λ2=βμ

Konvention

M2=N¯

mittlere Teilchenzahl

Y=exp(Ψ)=N=0R6NdξNexp[β(H(ξN)μN)]

grokanonische Zustandssumme

Phasenraum:

ξΓ=N=1R6NξNR6N
ρ(ξ)=Y1expβ[H(ξ)μN]

Mittelwertfindung:

M=N=0R6NdξNM(ξN)ρ(ξN)=N=0R6NdξNM(ξN)Y1expβ[H(ξ)μN]

Mittlere Teilchenzahl:

N=N=0R6NdξNNρ(ξN)R6NdξNρ(ξN)=PN

Als Wahrscheinlichkeit dafür, dass n Teilchen vorhanden sind!

= Marginalverteilung von

ρ(ξN)

bezüglich N

Also:

N=N=0PNNR6NdξNρ(ξN)=PN=Y1eβμNR6NdξNeβH

Normierung:

1=N=0PN


Beispiel

Klassisches ideales Gas (ohne Wechselwirkung):

H(ξN)=i=13Npi22mPN=?U=H=?N¯=N=?

sind übungshalber zu berechnen!