Entropie von Gleichgewichtszuständen: Difference between revisions

From testwiki
Jump to navigation Jump to search
*>SchuBot
Mathematik einrücken
*>SchuBot
m Pfeile einfügen, replaced: --> → → (2), -> → → (9)
Line 59: Line 59:


{{Beispiel|Beispiel:
{{Beispiel|Beispiel:
;V:-> unverschiebbare Wand
;V:unverschiebbare Wand
;T: -> isolierende Wand
;T: isolierende Wand
;N:-> nichtpermeable Wand
;N:nichtpermeable Wand
;Q:-> elektrisch isolierende Wand
;Q:elektrisch isolierende Wand
;Explosives Gas: Gehemmtes Gleichgewicht der chemischen Komponenten bis zur Zündung/ Zugabe eines Katalysators}}
;Explosives Gas: Gehemmtes Gleichgewicht der chemischen Komponenten bis zur Zündung/ Zugabe eines Katalysators}}


Line 68: Line 68:
Einführung einer weiteren extensiven thermodynamischen Größe:
Einführung einer weiteren extensiven thermodynamischen Größe:


'''Entropie''' S-> Existenz irreversibler Prozesse
'''Entropie''' S→ Existenz irreversibler Prozesse


   {{FB|Entropie Postulat}} (Clausius , 1860):
   {{FB|Entropie Postulat}} (Clausius , 1860):
Line 90: Line 90:
durch das Prinzip der vorurteilsfreien Schätzung:<math>S=!=\max .</math>
durch das Prinzip der vorurteilsfreien Schätzung:<math>S=!=\max .</math>


--> statistische Begründung der Gleichgewichtsthermodynamik !
statistische Begründung der Gleichgewichtsthermodynamik !


=== Eigenschaften der Entropiegrundfunktion <math>S\left( \left\langle {{M}^{n}} \right\rangle  \right)</math>: ===
=== Eigenschaften der Entropiegrundfunktion <math>S\left( \left\langle {{M}^{n}} \right\rangle  \right)</math>: ===


# <math>I\left( \left\langle {{M}^{n}} \right\rangle  \right)</math>  ist additiv für unkorrelierte Subsysteme -> <math>S\left( \left\langle {{M}^{n}} \right\rangle  \right)</math>  ist extensiv
# <math>I\left( \left\langle {{M}^{n}} \right\rangle  \right)</math>  ist additiv für unkorrelierte Subsysteme <math>S\left( \left\langle {{M}^{n}} \right\rangle  \right)</math>  ist extensiv
# [[Verallgemeinerte kanonische Verteilung#Gibbsche Fundamentalgleichung|Gibbsche Fundamentalgleichung]]]
# [[Verallgemeinerte kanonische Verteilung#Gibbsche Fundamentalgleichung|Gibbsche Fundamentalgleichung]]]
{{Gln|<math>\begin{align}
{{Gln|<math>\begin{align}
Line 221: Line 221:


'''Es gilt:'''
'''Es gilt:'''
i) {{Satz| df ist exakt <-> <math>\frac{\partial {{g}_{m}}}{\partial {{z}^{n}}}=\frac{\partial {{g}_{n}}}{\partial {{z}^{m}}}</math>  ( Integrabilitätsbedingung)|
i) {{Satz| df ist exakt <<math>\frac{\partial {{g}_{m}}}{\partial {{z}^{n}}}=\frac{\partial {{g}_{n}}}{\partial {{z}^{m}}}</math>  ( Integrabilitätsbedingung)|
'''Beweis:'''
'''Beweis:'''


'''" -> "'''
'''" "'''


:<math>\frac{{{\partial }^{2}}f}{\partial {{z}^{n}}\partial {{z}^{m}}}=\frac{{{\partial }^{2}}f}{\partial {{z}^{m}}\partial {{z}^{n}}}</math>
:<math>\frac{{{\partial }^{2}}f}{\partial {{z}^{n}}\partial {{z}^{m}}}=\frac{{{\partial }^{2}}f}{\partial {{z}^{m}}\partial {{z}^{n}}}</math>
Line 252: Line 252:
\end{align}</math>
\end{align}</math>
}}
}}
ii) df ist exakt <-> <math>\oint\limits_{{}}{{}}df=0</math>
ii) df ist exakt <<math>\oint\limits_{{}}{{}}df=0</math>




Line 264: Line 264:


;{{FB|verallgemeinerte kanonische Verteilung}}:<math>\hat{\rho }=\exp \left( \Psi -{{\lambda }_{n}}{{M}^{n}} \right)</math>
;{{FB|verallgemeinerte kanonische Verteilung}}:<math>\hat{\rho }=\exp \left( \Psi -{{\lambda }_{n}}{{M}^{n}} \right)</math>
;{{FB|Entropie}}:--> <math>S\left( \left\langle {{M}^{n}} \right\rangle  \right)=-ktr\left( \rho \ln \rho  \right)=k\left( {{\lambda }_{n}}\left\langle {{M}^{n}} \right\rangle -\Psi  \right)</math>
;{{FB|Entropie}}:<math>S\left( \left\langle {{M}^{n}} \right\rangle  \right)=-ktr\left( \rho \ln \rho  \right)=k\left( {{\lambda }_{n}}\left\langle {{M}^{n}} \right\rangle -\Psi  \right)</math>
;Verallgemeinerte relation zwischen den '''extensiven''' Variablen <math>\left\langle {{M}^{n}} \right\rangle </math> und dem thermodynamisch konjugierten '''intensiven''' Parametern <math>{{\lambda }_{n}}</math>:<math>\begin{align}
;Verallgemeinerte relation zwischen den '''extensiven''' Variablen <math>\left\langle {{M}^{n}} \right\rangle </math> und dem thermodynamisch konjugierten '''intensiven''' Parametern <math>{{\lambda }_{n}}</math>:<math>\begin{align}
& \frac{\partial \Psi }{\partial {{\lambda }_{n}}}=\left\langle {{M}^{n}} \right\rangle  \\
& \frac{\partial \Psi }{\partial {{\lambda }_{n}}}=\left\langle {{M}^{n}} \right\rangle  \\

Revision as of 21:14, 12 September 2010


{{#set:Urheber=Prof. Dr. E. Schöll, PhD|Inhaltstyp=Script|Kapitel=2|Abschnitt=4}} Kategorie:Thermodynamik __SHOWFACTBOX__


Einheitliche Notation für klassische Mechanik und QM:

M^=dξρ(ξ)M(ξ)=tr(ρ^M^)


Definition:

Extensive thermodynamische Variablen sind additiv bei Systemzusammensetzung:

Gesamtsystem: Σ=Σ1+Σ2

Extensive Variablen: M=MI+MII

{{#set:Definition=Extensive thermodynamische Variablen|Index=Extensive thermodynamische Variablen}}


Beispiele:
V
Volumen V
U
innere Energie U
N
Teilchenzahl N
M
Magnetisierung M
Q
Elektrische Ladung Q
U,N,M,Q~V
alle Variablen ~ V ( " extension of system")


Definition

Intensive thermodynamische Variablen nehmen bei thermodynamischem Gleichgewicht zwischen 2 Subsystemen den gleichen Wert an:

Intensive Variablen: λ=λI=λII

{{#set:Definition=intensive thermodynamische Variablen|Index=intensive thermodynamische Variablen}}


( folgt aus verallgemeinerter kanonischer Verteilung).


Beispiele:
p
Druck p ( mechanisches Gleichgewicht)
T
Temperatur T ( thermodynamisches Gleichgewicht)


Allgemein:

λn heißt thermodynamisch konjugierte intensive Kontaktvariable{{#set:Fachbegriff=thermodynamisch konjugierte intensive Kontaktvariable|Index=thermodynamisch konjugierte intensive Kontaktvariable}} Mn (Lagrange- Multiplikatoren)

Nebenbemerkung:

Die aus den intensiven Variablen Mn gebildeten Dichten

MnV=mn sind intensiv !

Aber sind dennoch keine thermodynamisch konjugierten Kontaktvariablen !

Satz:

Sind 2 Systeme im Gleichgewicht mit einem 3. System, so sind sie auch untereinander im Gleichgewicht ("Transitivität")

(folgt aus der Gleichheit der intensiven Parameter)

Absolutes Gleichgewicht{{#set
Fachbegriff=Absolutes Gleichgewicht|Index=Absolutes Gleichgewicht}}: Alle Systeme sind miteinander im Gleichgewicht
Relatives Gleichgewicht{{#set
Fachbegriff=Relatives Gleichgewicht|Index=Relatives Gleichgewicht}}: Subsysteme sind in sich im Gleichgewicht, jedoch nicht untereinander !(gehemmtes Gleichgewicht)


Thermodynamisches Prinzip{{#set:Fachbegriff=Thermodynamisches Prinzip|Index=Thermodynamisches Prinzip}}: Zu jeder extensiven thermodynamischen Variable Mn gibt es eine Wand oder "Hemmung", die bezüglich deren Austausch isolierend ist!


Beispiel:
V
→ unverschiebbare Wand
T
→ isolierende Wand
N
→ nichtpermeable Wand
Q
→ elektrisch isolierende Wand
Explosives Gas
Gehemmtes Gleichgewicht der chemischen Komponenten bis zur Zündung/ Zugabe eines Katalysators


Einführung einer weiteren extensiven thermodynamischen Größe:

Entropie S→ Existenz irreversibler Prozesse

 Entropie Postulat{{#set:Fachbegriff=Entropie Postulat|Index=Entropie Postulat}} (Clausius , 1860):
Zu jedem isolierten thermodynamischen System gibt es eine eindeutige Zustandsfunktion
S(M1,...,Mm), die mit wachsender Zeit nicht abnimmt !


Definition Zustandsfunktion

hängt nur vom gegenwärtigen thermodynamischen Zustand, nicht jedoch von der Vorgeschichte (also von der Prozessführung) ab!

{{#set:Definition=Zustandsfunktion|Index=Zustandsfunktion}}


Verknüpfung der Statistik mit der phänomenologischen Thermodynamik

Zusammenhang zwischen Entropie und Informationsunkenntnis nach Shannon


S(Mn)=kI(Mn) (Fundamentalzusammenhang)

{{#set:Gleichung=Fundamentalzusammenhang|Index=Fundamentalzusammenhang}}


S
Entropie
k
k= 1,321023JK= Boltzmann- Kosntante
I
fehlende Kenntnis nach Shannon

I = Shannon- Information( kann nach der letzten Messung nicht zunehmen!) eindeutig abhängig von Mn durch das Prinzip der vorurteilsfreien Schätzung:S=!=max.

→ statistische Begründung der Gleichgewichtsthermodynamik !

Eigenschaften der Entropiegrundfunktion S(Mn):

  1. I(Mn) ist additiv für unkorrelierte Subsysteme → S(Mn) ist extensiv
  2. Gibbsche Fundamentalgleichung]
dS(Mn)=kλndMnS(Mn)Mn=kλn

{{#set:Gleichung=Gibbsche Fundamentalgleichung|Index=Gibbsche Fundamentalgleichung}}


Anwendung: Kanonische Verteilung

dS(Mn)=kβdUS(Mn)U=kβ=:1T


Definition der absoluten Temperatur T:
β=1kT

{{#set:Definition=absolute Temperatur|Index=absolute Temperatur}}


Somit ist β die thermodynamisch konjugierte intensive Variable zu U

  • Bei Energieaustausch zwischen 2 Subsystemen ist T im Gleichgewicht gleich !
Quasistatischer Prozess{{#set
Fachbegriff=Quasistatischer Prozess|Index=Quasistatischer Prozess}} ( reversibel):Folge von Gleichgewichtszuständen.
Voraussetzung: Zeitskalentrennung zwischen Prozessgeschwindigkeit und Gleichgewichtseinstellung möglich!
Arbeitskoordinaten{{#set
Fachbegriff=Arbeitskoordinaten|Index=Arbeitskoordinaten}} ( äußere Parameter): Extensive thermodynamische Variable, durch die ohne Änderung der materiellen Zusammensetzung von außen auf das System eingewirkt wird:


Beispiel: Volumen V: Gas in Volumen V kann durch Kolben komprimiert werden!

Quasistatisch geleistete Arbeit am System:

δW=pdV>0fu¨rdV<0

also bei Kompression !

p: Druck: instantaner, räumlich homogener Wert, falls Gleichgewichtszustände durchlaufen werden (quasistatisch).


Druckensemble

U=tr(ρ^H),β=1kTU=tr(ρ^V^)=V,λ2=??

das Volumen fluktuiert !

ρ^=exp(ΨβHλ2V)dS=kβdU+kλ2dVkβ=1Tλ2=pkT


Definition Druck
(SV)U=kλ2:=pT


dann gilt in Übereinstimmung mit der phänomenologischen Thermodynamik:

dS=dUT+pdVTdU=TdSpdV

Dabei:

Satz:

dU=δQ+δW

Erster Hauptsatz der Thermodynamik ( Energieerhaltungssatz)

{{#set:Satz=Erster Hauptsatz der Thermodynamik|Index=Erster Hauptsatz der Thermodynamik}}


δQ
Vom System reversibel aufgenommene Wärmemenge
δW
Vom System quasistatisch geleistete Arbeit


left|50px Nebenbemerkung:

Q und W sind keine Zustandsfunktionen, daher keine exakten Funktionale δQ und δW


  • Energiezustandsfunktion eines einfachen thermischen Systems U(S,V)

Zur Unterscheidung der Differenziale dU und δQ,δW

dU ist totales ( = exaktes) Differenzial einer Zustandsfunktion U(z1,z2,....)

Dagegen ist δQ eine Pfaffsche Differenzialform{{#set:Fachbegriff=Pfaffsche Differenzialform|Index=Pfaffsche Differenzialform}}}

δQ=ngn(z1,z2,...,)dzn

Exakte Differenziale sind dabei spezielle Differenzialformen:

df=ngndzngn=fzn

Es gilt: i) Satz:

df ist exakt <→ gmzn=gnzm ( Integrabilitätsbedingung)

Beweis:

Beweis:

" → "

2fznzm=2fzmzn

"<-"

Aus

gnzm=gmznfu¨rΨ:=dzngnΨzm=dzngnzm=dzngmzn=dgm=gm

Also:

Ψ=fgn=fzn


ii) df ist exakt <→ df=0


iii) Integrierender Faktor{{#set:Fachbegriff=Integrierender Faktor|Index=Integrierender Faktor}}

Falls δa kein exaktes Differenzial, aber ρ(z) existiert, so dass ρ(z)δa=df exaktes Differenzial, dann heißt ρ(z) integrierender Faktor:

ρgn=fzn

Zusammenfassung

verallgemeinerte kanonische Verteilung{{#set
Fachbegriff=verallgemeinerte kanonische Verteilung|Index=verallgemeinerte kanonische Verteilung}}:ρ^=exp(ΨλnMn)
Entropie{{#set
Fachbegriff=Entropie|Index=Entropie}}:→ S(Mn)=ktr(ρlnρ)=k(λnMnΨ)
Verallgemeinerte relation zwischen den extensiven Variablen Mn und dem thermodynamisch konjugierten intensiven Parametern λn
Ψλn=MnΨ(λn)=lntr(eλnMn)
Gibbsche Fundamentalrelation{{#set
Fachbegriff=Gibbsche Fundamentalrelation|Index=Gibbsche Fundamentalrelation}}:dS(Mn)=kλndMn
phänomenologische Definition der intensiven Variablen
SMn=kλn

Siehe auch

Skript ab Seite 42


__SHOWFACTBOX__