Wahrscheinlichkeitsbegriff: Difference between revisions

From testwiki
Jump to navigation Jump to search
*>SchuBot
m Pfeile einfügen
*>SchuBot
m Interpunktion, replaced: ! → ! (7), ( → ( (8)
Line 79: Line 79:
A und B sind disjunkt, falls <math>A\cap B=0</math>
A und B sind disjunkt, falls <math>A\cap B=0</math>


'''Vollständig disjunkte Ereignismenge ( sample set)'''
'''Vollständig disjunkte Ereignismenge (sample set)'''


:<math>\begin{align}
:<math>\begin{align}
Line 129: Line 129:
N ist die Zahl der Experimente insgesamt
N ist die Zahl der Experimente insgesamt


====axiomatische Definition ( Kolmogoroff)====
====axiomatische Definition (Kolmogoroff)====


Sei A<math>\in A\acute{\ }</math>
Sei A<math>\in A\acute{\ }</math>


( Boolscher Verband)
(Boolscher Verband)


Sei
Sei
Line 206: Line 206:


:<math>P({{A}_{1}})\le P({{A}_{2}})</math>
:<math>P({{A}_{1}})\le P({{A}_{2}})</math>
 
,
, falls <math>{{A}_{1}}\subseteq {{A}_{2}}</math>
falls <math>{{A}_{1}}\subseteq {{A}_{2}}</math>


====bedingte Wahrscheinlichkeit====
====bedingte Wahrscheinlichkeit====


Die Bedingte Wahrscheinlichkeit ( A unter der Bedingung, dass B), ergibt sich gemäß
Die Bedingte Wahrscheinlichkeit (A unter der Bedingung, dass B), ergibt sich gemäß


Also A unter der Bedingung, dass B eingetreten ist !
Also A unter der Bedingung, dass B eingetreten ist!


:<math>P\left( A/B \right)=\frac{P\left( A\cap B \right)}{P(B)}</math>
:<math>P\left( A/B \right)=\frac{P\left( A\cap B \right)}{P(B)}</math>
Line 235: Line 235:
Eine Zufallsvariable ist gegeben durch
Eine Zufallsvariable ist gegeben durch


# eine Menge M von vollständig disjunkten Ereignissen ( sample set) <math>{{X}_{i}}</math>
# eine Menge M von vollständig disjunkten Ereignissen (sample set) <math>{{X}_{i}}</math>
#  
#  
# eine Wahrscheinlichkeitsverteilung <math>P({{X}_{i}})</math>
# eine Wahrscheinlichkeitsverteilung <math>P({{X}_{i}})</math>
Line 245: Line 245:


Definiert man sich dies für eine kontinuierliche Menge, also <math>x\in R</math>
Definiert man sich dies für eine kontinuierliche Menge, also <math>x\in R</math>
,


,


so gilt:
so gilt:
Line 253: Line 253:


definiert eine '''Wahrscheinlichkeitsdichte oder auch Wahrscheinlichkeitsverteilung '''<math>\rho \left( x \right)</math>
definiert eine '''Wahrscheinlichkeitsdichte oder auch Wahrscheinlichkeitsverteilung '''<math>\rho \left( x \right)</math>
.


.


Übergang zu diskreten Ereignissen:
Übergang zu diskreten Ereignissen:
Line 284: Line 284:
:<math>\int_{{}}^{{}}{{}}\rho \left( x \right){{d}^{d}}x=1</math>
:<math>\int_{{}}^{{}}{{}}\rho \left( x \right){{d}^{d}}x=1</math>


'''Mittelwert ( Erwartungswert) '''einer Zufallsvariablen x:
'''Mittelwert (Erwartungswert) '''einer Zufallsvariablen x:


:<math>\left\langle x \right\rangle =\int_{{}}^{{}}{{}}\rho \left( x \right)x{{d}^{d}}x</math>
:<math>\left\langle x \right\rangle =\int_{{}}^{{}}{{}}\rho \left( x \right)x{{d}^{d}}x</math>
Line 316: Line 316:
Beweis:
Beweis:


Merke: In Bezug auf die Wahrscheinlichkeitsverteilungen ist unkorreliert gleichbedeutend mit separabel _> die Phasen werden addiert !
Merke: In Bezug auf die Wahrscheinlichkeitsverteilungen ist unkorreliert gleichbedeutend mit separabel _> die Phasen werden addiert!


Sind die Zustände verschränkt, so können die Phasen nicht addiert werden.
Sind die Zustände verschränkt, so können die Phasen nicht addiert werden.


Die Einführung einer Symplektik ist nötig !  ( siehe unten).
Die Einführung einer Symplektik ist nötig!  (siehe unten).


====Zusammenhang zwischen Wahrscheinlichkeitsverteilung und Mittelwerten====
====Zusammenhang zwischen Wahrscheinlichkeitsverteilung und Mittelwerten====
Line 337: Line 337:
\end{align}</math>
\end{align}</math>


Durch die Angabe aller nicht verschwindender Momente ist eine Wahrscheinlichkeitsverteilung vollständig festgelegt !
Durch die Angabe aller nicht verschwindender Momente ist eine Wahrscheinlichkeitsverteilung vollständig festgelegt!


====Verallgemeinerung auf d Zufallsvariablen:====
====Verallgemeinerung auf d Zufallsvariablen:====
Line 365: Line 365:


Kumulanten sind ADDITIV  für unkorrelierte Zufallsvariablen
Kumulanten sind ADDITIV  für unkorrelierte Zufallsvariablen
( Dies gilt nicht für die Momente !!)
(Dies gilt nicht für die Momente!!)


'''Beweis: seien x1, x2 unkorreliert:'''
'''Beweis: seien x1, x2 unkorreliert:'''
Line 389: Line 389:


Nichtdiagonalelemente verschwinden für unkorrelierte Zufallsvariablen.
Nichtdiagonalelemente verschwinden für unkorrelierte Zufallsvariablen.
Denn dann: separieren die Momente der WSK- Verteilung ! Siehe oben
Denn dann: separieren die Momente der WSK- Verteilung! Siehe oben
* Korrelationsmatrix beschreibt die qm- Korrelationen über ihre Außerdiagonalelemente
* Korrelationsmatrix beschreibt die qm- Korrelationen über ihre Außerdiagonalelemente


Line 424: Line 424:


Nebenbemerkung, die Gaußverteilung <math>\rho (x)</math>
Nebenbemerkung, die Gaußverteilung <math>\rho (x)</math>
ist bestimmt durch <math>{{\left\langle x \right\rangle }_{C}},{{\left\langle {{x}^{2}} \right\rangle }_{C}}</math>
ist bestimmt durch <math>{{\left\langle x \right\rangle }_{C}},{{\left\langle {{x}^{2}} \right\rangle }_{C}}</math>.
. Alle höheren Kumulanten verschwinden !
Alle höheren Kumulanten verschwinden!

Revision as of 00:58, 13 September 2010


{{#set:Urheber=Prof. Dr. E. Schöll, PhD|Inhaltstyp=Script|Kapitel=1|Abschnitt=1}} Kategorie:Thermodynamik __SHOWFACTBOX__


Ereignis
Messergebnis von Observablen (event) oder fester Mikrozustand (der realisiert wird).

Ereignisse bilden einen Abelschen Verband{{#set:Fachbegriff=Abelschen Verband|Index=Abelschen Verband}} (Ereignisalgebra)

Merke: Ereignisalgebra = Abelscher verband A´

mit Mengentheoretischen Verknüpfungen

,

Vereinigung (oder) und Durchschnitt (und)

Für A,B,C A´ gilt:

AB=BAAB=BA

(Kommutativitätsgesetz)

A(BC)=(AB)CA(BC)=(AB)C

Assoziativität

A(AB)=AA(AB)=A

(Verschmelzungsgesetz)

A(BC)=(AB)(AC)A(BC)=(AB)(AC)

Distributivgesetz

SAS=A0A0=A

Existenz der Eins (sicheres Ereignis) und Existenz des Nullelements: "leeres Ereignis"

AA´BAB=0,AB=S

Existenz des Komplements

B=¬A=A¯

Induzierte Halbordnung

AB A impliziert B, falls AB=A

Also: menge A liegt in B

A und B sind disjunkt, falls AB=0

Vollständig disjunkte Ereignismenge (sample set)

{A1,A2,...,An}mitAiAj=Aiδiji=1nAi=S

Beispiel:

Ereignismenge

{1,2,3,4,5,6}

Bemerkung: Diese Menge M ist keine Algebra, da

ABMA¯M

Wahrscheinlichkeit

Empirische Definition

P(A)=limNN(A)N

mit

N(A)N

relative Häufigkeit des Ereignisses A

N(A) ist die Zahl der Experimente mit dem Ergebnis A

N ist die Zahl der Experimente insgesamt

axiomatische Definition (Kolmogoroff)

Sei AA´

(Boolscher Verband)

Sei

SA´

das sichere Ereignis.

Dann erfüllt die Wahrscheinlichkeit P(A)

die Axiome:

P(A)0P(S)=1

Für disjunkte Ereignisse:

AB=0P(AB)=P(A)+P(B)

Folgerung

P(A)+P(A¯)=P(AA¯)=1P(A)1

Zerlegung in disjunkte Ereignisse

für beliebige A1, A2:

A1A2=A1+A¯1A2=A1+A2A1A2A¯1A2=A2A1A2A2=A1A2+A¯1A2

Also folgt für Wahrscheinlichkeiten:

P(A1A2)=P(A1)+P(A¯1A2)=P(A1)+P(A2)P(A1A2)P(A2)=P(A1A2)+P(A¯1A2)

Also:

P(A1A2)+P(A1A2)=P(A1)+P(A2)P(A1A2)0P(A1A2)P(A1)+P(A2)

Speziell

P(A1)P(A2)

,

falls A1A2

bedingte Wahrscheinlichkeit

Die Bedingte Wahrscheinlichkeit (A unter der Bedingung, dass B), ergibt sich gemäß

Also A unter der Bedingung, dass B eingetreten ist!

P(A/B)=P(AB)P(B)

Falls A von B unabhängig ist, so gilt:

P(AB)=P(A)P(B)P(A/B)=P(AB)P(B)=P(A)

Nebenbemerkung, ebenso gilt:

P(B/A)=P(AB)P(A)=P(B)

Zufallsvariablen

Eine Zufallsvariable ist gegeben durch

  1. eine Menge M von vollständig disjunkten Ereignissen (sample set) Xi
  2. eine Wahrscheinlichkeitsverteilung P(Xi)
  3. über M

es gilt die Normierung

iP(Xi)=1

Definiert man sich dies für eine kontinuierliche Menge, also xR ,


so gilt:

P(x´xx´+dx´)=ρ(x´)dx´

definiert eine Wahrscheinlichkeitsdichte oder auch Wahrscheinlichkeitsverteilung ρ(x) .


Übergang zu diskreten Ereignissen:

ρ(x)=i=1nδ(xx(i))Pi

mit Normierung

abρ(x)dx=1

Physikalische Interpretation

Die Wahrscheinlichkeitsverteilung kann man sich realisiert denken durch ein Ensemble von vielen äquivalenten Systemen, also durch eine Dichteverteilung ρ(x)dx

der Mitglieder des Ensembles mit Werten zwischen x und x+dx

Verallgemeinerung auf d Zufallsvariablen

x=(x1,x2,...,xd)Rdddx=dx1dx2...dxd

Die Normierung geschieht dann in einem d- Dimensionalen Raum.

ρ(x)ddx=1

Mittelwert (Erwartungswert) einer Zufallsvariablen x:

x=ρ(x)xddx

für eine beliebige Funktion f(x):

f=ρ(x)f(x)ddx

Nebenbemerkung

Der Mittelwert ist ein lineares Funktional fρ:[R

[ff

Linearität:

c1f1+c2f2=c1f1+c2f2

Unkorrelierte Zufallsvariable:

x1 und x2 heißen unkorreliert, falls

ρ(x1,x2)=ρ1(x1)ρ2(x2)

Dann gilt:

x1x2=x1x2

Beweis:

Merke: In Bezug auf die Wahrscheinlichkeitsverteilungen ist unkorreliert gleichbedeutend mit separabel _> die Phasen werden addiert!

Sind die Zustände verschränkt, so können die Phasen nicht addiert werden.

Die Einführung einer Symplektik ist nötig! (siehe unten).

Zusammenhang zwischen Wahrscheinlichkeitsverteilung und Mittelwerten

Wir verstehen als n.tes Moment einer Wahrscheinlichkeitsverteilung:

Mn:=xn

Momentenerzeugende:

Z(a)=eax=0(ax)nn!=0(a)nn!MnMn=nanZ(a)|a=0=Mn

Durch die Angabe aller nicht verschwindender Momente ist eine Wahrscheinlichkeitsverteilung vollständig festgelegt!

Verallgemeinerung auf d Zufallsvariablen:

Mn1,n2,...nd:=x1n1x2n2....xdnd

ein Moment der Ordnung

n:=n1+n2+...+nd

Momentenerzeugende:

Z(a)=eax=n1,n2...nd=0((a1x1)n1(a2x2)n2...(adxd)nd)n1!n2!...nd!=n1,n2...nd=0((a1)n1(a2)n2...(ad)nd)n1!n2!...nd!Mn1..nda=(a1,a2,...,ad)

Kumulante

Cn1,n2,...nd:=x1n1x2n2....xdndC

ist definiert durch die Kumulantenerzeugende:

Γ(a)=lneax
n1....nda1n1....adndΓ(a)|a=0=Cn1,n2,...ndΓ(a)=lneax=n1...nda1n1...adndn1!...nd!Cn1,n2,...nd

Eigenschaft

Kumulanten sind ADDITIV für unkorrelierte Zufallsvariablen (Dies gilt nicht für die Momente!!)

Beweis: seien x1, x2 unkorreliert:

Z(a)=eax=dx1dx2ρ(x1)ρ(x2)ea1x1ea2x2=ea1x1ea2x2Γ(a)=lnZ(a)=lnea1x1+lnea2x2=Γ(a1)+Γ(a2)nanΓ(a)|a=0(x1+x2)nC=xnC=x1nC+x2nC

Fluktuation:

Δx:=xx

mit

Δx=0

Bildung der Varianz:

(Δx)2=(xx)2=x22xx+x2=x2x2

Als Maß für die Breite einer Verteilung

Korrelationsmatrix:

ΔxkΔxl=xkxlxkxl

Nichtdiagonalelemente verschwinden für unkorrelierte Zufallsvariablen. Denn dann: separieren die Momente der WSK- Verteilung! Siehe oben

  • Korrelationsmatrix beschreibt die qm- Korrelationen über ihre Außerdiagonalelemente

Zusammenhang zwischen Kumulanten und Momenten:

xC=xx2C=(Δx)2=x2x2x3C=(Δx)3x4C=(Δx)43(Δx)22

Gaußverteilung / Normalverteilung

ρ(x)=Aexp((xx)22σ2)σ2:=(Δx)2=x2C

Mit Sigma als Standardabweichung

Normierung:

dxρ(x)=Aσ2duexp(u2)=!=1u:=xσ2

Wegen:

duexp(u2)=πA=1σ2π

Nebenbemerkung, die Gaußverteilung ρ(x) ist bestimmt durch xC,x2C.

Alle höheren Kumulanten verschwinden!