Kurzer historischer Überblick: Difference between revisions
Line 27: | Line 27: | ||
<math>{{w}_{i}}\tilde{\ }\exp \left( -\frac{{{\varepsilon }_{i}}}{kT} \right)</math> auf. | <math>{{w}_{i}}\tilde{\ }\exp \left( -\frac{{{\varepsilon }_{i}}}{kT} \right)</math> auf. | ||
==L. Bolzmann (1844-1906) u.a.== | ==L. Bolzmann (1844-1906) u.a.== | ||
verbinden die {{FB|Entropie} S mit den w_i 's undn führen die Temperaturdefinition über S ein: | verbinden die {{FB|Entropie}} S mit den w_i 's undn führen die Temperaturdefinition über S ein: | ||
<math>S=S\left( N,E,V \right)=-{{k}_{\text{B}}}\sum\limits_{i}{{{p}_{i}}}\ln {{w}_{i}}\rightleftharpoons {{T}^{-1}}={{\partial }_{E}}S</math> (E=Energie) | <math>S=S\left( N,E,V \right)=-{{k}_{\text{B}}}\sum\limits_{i}{{{p}_{i}}}\ln {{w}_{i}}\rightleftharpoons {{T}^{-1}}={{\partial }_{E}}S</math> (E=Energie) | ||
Line 33: | Line 33: | ||
man verbindet die mikroskopiscen Größen <math>\epsilon_i</math> mit T, einer makroskopischen Größe. | man verbindet die mikroskopiscen Größen <math>\epsilon_i</math> mit T, einer makroskopischen Größe. | ||
(siehe auch http://de.wikipedia.org/wiki/Entropie_(Thermodynamik)#Statistische_Physik) | (siehe auch[http://de.wikipedia.org/wiki/Entropie_(Thermodynamik)#Statistische_Physik]) | ||
==Quantenstatistik== | ==Quantenstatistik== |
Revision as of 20:55, 30 August 2010
(Rückwärtsüberblick über die Vorlesung)
65px|Kein GFDL | Der Artikel Kurzer historischer Überblick basiert auf der Vorlesungsmitschrift von Moritz Schubotz des 1.Kapitels (Abschnitt 2) der Thermodynamikvorlesung von Prof. Dr. A. Knorr. |
|}}
{{#set:Urheber=Prof. Dr. A. Knorr|Inhaltstyp=Script|Kapitel=1|Abschnitt=2}} Kategorie:Thermodynamik __SHOWFACTBOX__
A Avangado (1776-1856)
hat als einer der erste so etwas we die idealea Gasgleichung aufgeschrieben
J Losschmidt (1821-1879)
Anschätzung zur Zahl Moleküle in typischem makroskopischem Volumen von 1023 Teilchen
J.C. Maywell (1831-1879)
berechnet erstmalig die Geschwidgkeitsverteilung des Teilchen in ein em idealn Gas
siehe auch [1]
J.W. Gibbs (1839-1903) u.a.
führen unabhängig von Gas Wahscheinlichkeitsverteilungen recht allgemein ein. Systemezustände mit Energie \epsilon_i treten mit Wahrscheinlichkeit auf.
L. Bolzmann (1844-1906) u.a.
verbinden die Entropie{{#set:Fachbegriff=Entropie|Index=Entropie}} S mit den w_i 's undn führen die Temperaturdefinition über S ein:
man verbindet die mikroskopiscen Größen mit T, einer makroskopischen Größe.
(siehe auch[2])
Quantenstatistik
neben der klassischen Statistik von Maxwell gibt es die Quantenstatistik
- E. Fermi (1901-1954) --> Fermionen (halbzahliger Spin)
- N. Bose (1894-1955) --> Bose (ganzzahliger Spin)
Was ist die Wahrscheinlichkeit ein Teilchen im Zustand mit Energie zu finden? mit
So wie Temeperatur Wäremeaustauisch zwischen System und Umgebung charakterisiert, so charakterisert den Teilchenaustausch.
Verfeinerungen jenseits sind Quanteneffekte.
Druck von quantemechanischen Fermionen verschwindet bei T=0 nicht aufgrund von Unschärfe/Pauliprinzip "Fermidruck"
Schwarzkörperstrahlung
es gibt Bosonen ohne Masse \mu=0 z.B. Photonen sind masselose Bosonen M.Planck (1858-1947) leitet 1900 die spektrale Energiedichte eines Strahlers ab
P.Debey (1884-1966)
wichtige Beiträge durch P.Debey [3] zur Materialphysik Theorie der Flüssigkeiten un der spezifischen Wärme von Festkörpern spezifisce Wäremkapazität
L.D. Landau [4] (1908-1966) arbeitet auf dem Gebiet der Transporttheorie/ Ferromagnetismus
Ratengleichung
Beschreibung von Stößen zwischen Teilchen bisher nicht diskutiert, einfacher Ansatz sind Ratengleichungen{{#set:Fachbegriff=Ratengleichungen|Index=Ratengleichungen}}
Bezetzungszahl (wie viele Teilchen sind im Mittel im Zustand k) beschreibt die Dynamik aus einem Nichtgleichgewicht in ein Gleichgewichtszustand
L. von Neumann (1903-1957)
allgemeinster Zugang zur Statistik erfolgt über die von neumann Gleichung ds Statischen Operator
Dynamik eines Quantensystems in Umgebung ersetzt die Schrödingergleichung.
ist der Wahrscheinlichkeitsoperator
((Vorlesung nimmt den Weg rückwärts))