Brechung und Reflexion: Difference between revisions

From testwiki
Jump to navigation Jump to search
Die Seite wurde neu angelegt: „<noinclude>{{Scripthinweis|Elektrodynamik|5|6}}</noinclude> Wir haben bereits gesehen, wie man aus den Stetigkeitsbedingungen mit Hilfe der integralen Maxwellgle…“
 
*>SchuBot
Einrückungen Mathematik
Line 6: Line 6:
Sogenannte Wellenausbreitung in geschichteten Medien
Sogenannte Wellenausbreitung in geschichteten Medien
Transparent ->
Transparent ->
<math>{{\varepsilon }_{i}}\in R</math>
:<math>{{\varepsilon }_{i}}\in R</math>


<math>\begin{align}
:<math>\begin{align}
& \frac{\omega }{{{c}_{1}}}=\left| {\bar{k}} \right|=\left| \bar{k}\acute{\ } \right|=\frac{\omega \acute{\ }}{{{c}_{1}}} \\
& \frac{\omega }{{{c}_{1}}}=\left| {\bar{k}} \right|=\left| \bar{k}\acute{\ } \right|=\frac{\omega \acute{\ }}{{{c}_{1}}} \\
& \left| \bar{k}\acute{\ }\acute{\ } \right|=\frac{\omega \acute{\ }\acute{\ }}{{{c}_{2}}} \\
& \left| \bar{k}\acute{\ }\acute{\ } \right|=\frac{\omega \acute{\ }\acute{\ }}{{{c}_{2}}} \\
Line 17: Line 17:
Einfallende Welle:
Einfallende Welle:


<math>\bar{E}(\bar{r},t)={{\bar{E}}_{0}}{{e}^{i\left( \bar{k}\bar{r}-\omega t \right)}}</math>
:<math>\bar{E}(\bar{r},t)={{\bar{E}}_{0}}{{e}^{i\left( \bar{k}\bar{r}-\omega t \right)}}</math>


Reflektierte Welle:
Reflektierte Welle:


<math>\bar{E}\acute{\ }(\bar{r},t)={{\bar{E}}_{0}}\acute{\ }{{e}^{i\left( \bar{k}\acute{\ }\bar{r}-\omega \acute{\ }t \right)}}</math>
:<math>\bar{E}\acute{\ }(\bar{r},t)={{\bar{E}}_{0}}\acute{\ }{{e}^{i\left( \bar{k}\acute{\ }\bar{r}-\omega \acute{\ }t \right)}}</math>


Transmittierte Welle:
Transmittierte Welle:


<math>\bar{E}\acute{\ }\acute{\ }(\bar{r},t)={{\bar{E}}_{0}}\acute{\ }\acute{\ }{{e}^{i\left( \bar{k}\acute{\ }\acute{\ }\bar{r}-\omega \acute{\ }\acute{\ }t \right)}}</math>
:<math>\bar{E}\acute{\ }\acute{\ }(\bar{r},t)={{\bar{E}}_{0}}\acute{\ }\acute{\ }{{e}^{i\left( \bar{k}\acute{\ }\acute{\ }\bar{r}-\omega \acute{\ }\acute{\ }t \right)}}</math>


<u>'''Grenzbedingungen für'''</u>
<u>'''Grenzbedingungen für'''</u>
<math>\bar{E}(\bar{r},t)</math>
:<math>\bar{E}(\bar{r},t)</math>
. Annahme: linear polarisiert:
. Annahme: linear polarisiert:


<math>{{\left. {{E}_{1}}+{{E}_{1}}\acute{\ } \right|}_{{{x}_{3}}=0}}={{\left. {{E}_{1}}\acute{\ }\acute{\ } \right|}_{{{x}_{3}}=0}}</math>
:<math>{{\left. {{E}_{1}}+{{E}_{1}}\acute{\ } \right|}_{{{x}_{3}}=0}}={{\left. {{E}_{1}}\acute{\ }\acute{\ } \right|}_{{{x}_{3}}=0}}</math>
-> Stetigkeit der Tangenzialkomponenten
-> Stetigkeit der Tangenzialkomponenten
Diese Bedingungen werden nur an die Amplituden gestellt. Für die Phasen gibt es keine Bedingungen, besser gesagt:
Diese Bedingungen werden nur an die Amplituden gestellt. Für die Phasen gibt es keine Bedingungen, besser gesagt:
Line 37: Line 37:
Betrachte Situation für r=0
Betrachte Situation für r=0


<math>\begin{align}
:<math>\begin{align}
& {{{\bar{E}}}_{01}}{{e}^{i\omega t}}+{{{\bar{E}}}_{01}}\acute{\ }{{e}^{i\omega \acute{\ }t}}={{{\bar{E}}}_{01}}\acute{\ }\acute{\ }{{e}^{i\omega \acute{\ }\acute{\ }t}} \\
& {{{\bar{E}}}_{01}}{{e}^{i\omega t}}+{{{\bar{E}}}_{01}}\acute{\ }{{e}^{i\omega \acute{\ }t}}={{{\bar{E}}}_{01}}\acute{\ }\acute{\ }{{e}^{i\omega \acute{\ }\acute{\ }t}} \\
& \Rightarrow \omega =\omega \acute{\ }=\omega \acute{\ }\acute{\ } \\
& \Rightarrow \omega =\omega \acute{\ }=\omega \acute{\ }\acute{\ } \\
Line 48: Line 48:
Betrachte für t=0
Betrachte für t=0


<math>{{E}_{01}}{{e}^{i{{k}_{1}}{{x}_{1}}}}+{{E}_{01}}\acute{\ }{{e}^{ik{{\acute{\ }}_{1}}{{x}_{1}}}}={{E}_{01}}\acute{\ }\acute{\ }{{e}^{i{{k}_{1}}\acute{\ }\acute{\ }{{x}_{1}}}}</math>
:<math>{{E}_{01}}{{e}^{i{{k}_{1}}{{x}_{1}}}}+{{E}_{01}}\acute{\ }{{e}^{ik{{\acute{\ }}_{1}}{{x}_{1}}}}={{E}_{01}}\acute{\ }\acute{\ }{{e}^{i{{k}_{1}}\acute{\ }\acute{\ }{{x}_{1}}}}</math>


Also:
Also:


<math>{{k}_{1}}={{k}_{1}}\acute{\ }={{k}_{1}}\acute{\ }\acute{\ }</math>
:<math>{{k}_{1}}={{k}_{1}}\acute{\ }={{k}_{1}}\acute{\ }\acute{\ }</math>


Aber: ( Siehe Skizze) ! Dies gilt ja genau für die Anteile entlang x^1, also:
Aber: ( Siehe Skizze) ! Dies gilt ja genau für die Anteile entlang x^1, also:
muss man den Winkel dazunehmen und man gewinnt:
muss man den Winkel dazunehmen und man gewinnt:


<math>\begin{align}
:<math>\begin{align}
& \left| {\bar{k}} \right|\sin \gamma =\left| \bar{k}\acute{\ } \right|\sin \gamma \acute{\ }=\left| \bar{k}\acute{\ }\acute{\ } \right|\sin \gamma \acute{\ }\acute{\ } \\
& \left| {\bar{k}} \right|\sin \gamma =\left| \bar{k}\acute{\ } \right|\sin \gamma \acute{\ }=\left| \bar{k}\acute{\ }\acute{\ } \right|\sin \gamma \acute{\ }\acute{\ } \\
& \left| {\bar{k}} \right|=\frac{\omega }{{{c}_{1}}} \\
& \left| {\bar{k}} \right|=\frac{\omega }{{{c}_{1}}} \\
Line 66: Line 66:
Somit gewinnen wir Reflexions und Snelliussches Brechungsgesetz:
Somit gewinnen wir Reflexions und Snelliussches Brechungsgesetz:


<math>\begin{align}
:<math>\begin{align}
& \sin \gamma =\sin \gamma \acute{\ } \\
& \sin \gamma =\sin \gamma \acute{\ } \\
& \frac{\sin \gamma \acute{\ }\acute{\ }}{\sin \gamma }=\frac{{{c}_{2}}}{{{c}_{1}}}=\frac{{{n}_{1}}}{{{n}_{2}}} \\
& \frac{\sin \gamma \acute{\ }\acute{\ }}{\sin \gamma }=\frac{{{c}_{2}}}{{{c}_{1}}}=\frac{{{n}_{1}}}{{{n}_{2}}} \\
Line 78: Line 78:
Stetigkeitsbedingungen: Normalkomponenten sind keine vorhanden -> Nur Tangentialkomponenten:
Stetigkeitsbedingungen: Normalkomponenten sind keine vorhanden -> Nur Tangentialkomponenten:


<math>\begin{align}
:<math>\begin{align}
& {{E}_{01}}={{E}_{01}}\acute{\ }={{E}_{01}}\acute{\ }\acute{\ }=0 \\
& {{E}_{01}}={{E}_{01}}\acute{\ }={{E}_{01}}\acute{\ }\acute{\ }=0 \\
& {{E}_{03}}={{E}_{03}}\acute{\ }={{E}_{03}}\acute{\ }\acute{\ }=0 \\
& {{E}_{03}}={{E}_{03}}\acute{\ }={{E}_{03}}\acute{\ }\acute{\ }=0 \\
Line 85: Line 85:
Für die Tangentialkomp.:
Für die Tangentialkomp.:


<math>{{E}_{02}}+{{E}_{02}}\acute{\ }={{E}_{02}}\acute{\ }\acute{\ }</math>
:<math>{{E}_{02}}+{{E}_{02}}\acute{\ }={{E}_{02}}\acute{\ }\acute{\ }</math>


Mit
Mit


<math>{{\bar{B}}_{0}}=\frac{c}{\omega }\bar{k}\times {{\bar{E}}_{0}}=\frac{c}{\omega }{{E}_{02}}\left( \begin{matrix}
:<math>{{\bar{B}}_{0}}=\frac{c}{\omega }\bar{k}\times {{\bar{E}}_{0}}=\frac{c}{\omega }{{E}_{02}}\left( \begin{matrix}
-{{k}_{3}}  \\
-{{k}_{3}}  \\
0  \\
0  \\
Line 97: Line 97:
Somit folgt dann für die Tangentialkomponente von B:
Somit folgt dann für die Tangentialkomponente von B:


<math>{{B}_{01}}+{{B}_{01}}\acute{\ }={{B}_{01}}\acute{\ }\acute{\ }\Rightarrow {{k}_{3}}{{E}_{02}}+{{k}_{3}}\acute{\ }E{{\acute{\ }}_{02}}={{k}_{3}}\acute{\ }\acute{\ }{{E}_{02}}\acute{\ }\acute{\ }</math>
:<math>{{B}_{01}}+{{B}_{01}}\acute{\ }={{B}_{01}}\acute{\ }\acute{\ }\Rightarrow {{k}_{3}}{{E}_{02}}+{{k}_{3}}\acute{\ }E{{\acute{\ }}_{02}}={{k}_{3}}\acute{\ }\acute{\ }{{E}_{02}}\acute{\ }\acute{\ }</math>


mit dem Reflexionsgesetz.
mit dem Reflexionsgesetz.


<math>{{k}_{3}}=-{{k}_{3}}\acute{\ }</math>
:<math>{{k}_{3}}=-{{k}_{3}}\acute{\ }</math>


<math>\begin{align}
:<math>\begin{align}
& \Rightarrow {{k}_{3}}\left( {{E}_{02}}-E{{\acute{\ }}_{02}} \right)={{k}_{3}}\acute{\ }\acute{\ }\left( {{E}_{02}}+{{E}_{02}}\acute{\ } \right) \\
& \Rightarrow {{k}_{3}}\left( {{E}_{02}}-E{{\acute{\ }}_{02}} \right)={{k}_{3}}\acute{\ }\acute{\ }\left( {{E}_{02}}+{{E}_{02}}\acute{\ } \right) \\
& \Rightarrow \frac{E{{\acute{\ }}_{02}}}{{{E}_{02}}}=\frac{{{k}_{3}}-{{k}_{3}}\acute{\ }\acute{\ }}{{{k}_{3}}+{{k}_{3}}\acute{\ }\acute{\ }} \\
& \Rightarrow \frac{E{{\acute{\ }}_{02}}}{{{E}_{02}}}=\frac{{{k}_{3}}-{{k}_{3}}\acute{\ }\acute{\ }}{{{k}_{3}}+{{k}_{3}}\acute{\ }\acute{\ }} \\
Line 110: Line 110:


Man muss nun  nur
Man muss nun  nur
<math>{{k}_{3}}\acute{\ }\acute{\ }</math>
:<math>{{k}_{3}}\acute{\ }\acute{\ }</math>
über den Brechungswinkel
über den Brechungswinkel
<math>\gamma \acute{\ }\acute{\ }</math>
:<math>\gamma \acute{\ }\acute{\ }</math>
ausdrücken und man gewinnt die Fresnelschen Formeln:
ausdrücken und man gewinnt die Fresnelschen Formeln:


<math>\begin{align}
:<math>\begin{align}
& {{k}_{3}}\acute{\ }\acute{\ }=\left| \bar{k}\acute{\ }\acute{\ } \right|\cos \gamma \acute{\ }\acute{\ }=\left| \bar{k}\acute{\ } \right|\frac{{{n}_{2}}}{{{n}_{1}}}\cos \gamma \acute{\ }\acute{\ } \\
& {{k}_{3}}\acute{\ }\acute{\ }=\left| \bar{k}\acute{\ }\acute{\ } \right|\cos \gamma \acute{\ }\acute{\ }=\left| \bar{k}\acute{\ } \right|\frac{{{n}_{2}}}{{{n}_{1}}}\cos \gamma \acute{\ }\acute{\ } \\
& \frac{{{n}_{2}}}{{{n}_{1}}}=\frac{\sin \gamma }{\sin \gamma \acute{\ }\acute{\ }} \\
& \frac{{{n}_{2}}}{{{n}_{1}}}=\frac{\sin \gamma }{\sin \gamma \acute{\ }\acute{\ }} \\
Line 126: Line 126:
Also:
Also:


<math>\begin{align}
:<math>\begin{align}
& \frac{E{{\acute{\ }}_{02}}}{{{E}_{02}}}=\frac{\cos \gamma \sin \gamma \acute{\ }\acute{\ }-\sin \gamma \cos \gamma \acute{\ }\acute{\ }}{\cos \gamma \sin \gamma \acute{\ }\acute{\ }+\sin \gamma \cos \gamma \acute{\ }\acute{\ }}=\frac{\sin \left( \gamma \acute{\ }\acute{\ }-\gamma  \right)}{\sin \left( \gamma \acute{\ }\acute{\ }+\gamma  \right)} \\
& \frac{E{{\acute{\ }}_{02}}}{{{E}_{02}}}=\frac{\cos \gamma \sin \gamma \acute{\ }\acute{\ }-\sin \gamma \cos \gamma \acute{\ }\acute{\ }}{\cos \gamma \sin \gamma \acute{\ }\acute{\ }+\sin \gamma \cos \gamma \acute{\ }\acute{\ }}=\frac{\sin \left( \gamma \acute{\ }\acute{\ }-\gamma  \right)}{\sin \left( \gamma \acute{\ }\acute{\ }+\gamma  \right)} \\
& \frac{E\acute{\ }{{\acute{\ }}_{02}}}{{{E}_{02}}}=\frac{2{{k}_{3}}}{{{k}_{3}}+{{k}_{3}}\acute{\ }\acute{\ }}=\frac{2\sin \left( \gamma \acute{\ }\acute{\ } \right)\cos \gamma }{\sin \left( \gamma \acute{\ }\acute{\ }+\gamma  \right)} \\
& \frac{E\acute{\ }{{\acute{\ }}_{02}}}{{{E}_{02}}}=\frac{2{{k}_{3}}}{{{k}_{3}}+{{k}_{3}}\acute{\ }\acute{\ }}=\frac{2\sin \left( \gamma \acute{\ }\acute{\ } \right)\cos \gamma }{\sin \left( \gamma \acute{\ }\acute{\ }+\gamma  \right)} \\
Line 135: Line 135:
<u>'''betrachte: Zeitmittel des Poynting- Vektors:'''</u>
<u>'''betrachte: Zeitmittel des Poynting- Vektors:'''</u>


<math>\left\langle {\bar{S}} \right\rangle =\frac{1}{T}\int_{0}^{T}{{}}dt\left( \bar{E}\times \bar{H} \right)</math>
:<math>\left\langle {\bar{S}} \right\rangle =\frac{1}{T}\int_{0}^{T}{{}}dt\left( \bar{E}\times \bar{H} \right)</math>


'''Reflexionskoeffizient: ( bei senkrechter Polarisation)'''
'''Reflexionskoeffizient: ( bei senkrechter Polarisation)'''


<math>\begin{align}
:<math>\begin{align}
& {{R}_{\bot }}={{\left| \frac{E{{\acute{\ }}_{02}}}{{{E}_{02}}} \right|}^{2}}=\frac{{{\sin }^{2}}\left( \gamma \acute{\ }\acute{\ }-\gamma  \right)}{{{\sin }^{2}}\left( \gamma \acute{\ }\acute{\ }+\gamma  \right)} \\
& {{R}_{\bot }}={{\left| \frac{E{{\acute{\ }}_{02}}}{{{E}_{02}}} \right|}^{2}}=\frac{{{\sin }^{2}}\left( \gamma \acute{\ }\acute{\ }-\gamma  \right)}{{{\sin }^{2}}\left( \gamma \acute{\ }\acute{\ }+\gamma  \right)} \\
&  \\
&  \\
Line 146: Line 146:
Transmissionskoeffizient ( bei senkrechter Polarisation)
Transmissionskoeffizient ( bei senkrechter Polarisation)


<math>{{T}_{\bot }}={{\left| \frac{E\acute{\ }{{\acute{\ }}_{02}}}{{{E}_{02}}} \right|}^{2}}=\frac{4{{\sin }^{2}}\left( \gamma \acute{\ }\acute{\ } \right){{\cos }^{2}}\gamma }{{{\sin }^{2}}\left( \gamma \acute{\ }\acute{\ }+\gamma  \right)}=1-{{R}_{\bot }}</math>
:<math>{{T}_{\bot }}={{\left| \frac{E\acute{\ }{{\acute{\ }}_{02}}}{{{E}_{02}}} \right|}^{2}}=\frac{4{{\sin }^{2}}\left( \gamma \acute{\ }\acute{\ } \right){{\cos }^{2}}\gamma }{{{\sin }^{2}}\left( \gamma \acute{\ }\acute{\ }+\gamma  \right)}=1-{{R}_{\bot }}</math>


# <u>'''Polarisation von'''</u>
# <u>'''Polarisation von'''</u>
Line 152: Line 152:
# Einfallsebene:
# Einfallsebene:
<u>'''Dadurch:'''</u>
<u>'''Dadurch:'''</u>
<math>\bar{B}\bot </math>
:<math>\bar{B}\bot </math>
Einfallsebene
Einfallsebene


* Analoge Argumentation:
* Analoge Argumentation:


<math>\begin{align}
:<math>\begin{align}
& {{B}_{01}}={{B}_{01}}\acute{\ }={{B}_{01}}\acute{\ }\acute{\ }=0 \\
& {{B}_{01}}={{B}_{01}}\acute{\ }={{B}_{01}}\acute{\ }\acute{\ }=0 \\
& {{B}_{03}}={{B}_{03}}\acute{\ }={{B}_{03}}\acute{\ }\acute{\ }=0 \\
& {{B}_{03}}={{B}_{03}}\acute{\ }={{B}_{03}}\acute{\ }\acute{\ }=0 \\
Line 167: Line 167:
Zur Übung berechnen, es ergibt sich:
Zur Übung berechnen, es ergibt sich:


<math>\begin{align}
:<math>\begin{align}
& \frac{E{{\acute{\ }}_{||}}}{{{E}_{||}}}=\frac{\tan \left( \gamma \acute{\ }\acute{\ }-\gamma  \right)}{\tan \left( \gamma \acute{\ }\acute{\ }+\gamma  \right)} \\
& \frac{E{{\acute{\ }}_{||}}}{{{E}_{||}}}=\frac{\tan \left( \gamma \acute{\ }\acute{\ }-\gamma  \right)}{\tan \left( \gamma \acute{\ }\acute{\ }+\gamma  \right)} \\
& \frac{E\acute{\ }{{\acute{\ }}_{||}}}{{{E}_{||}}}=\frac{2\sin \left( \gamma \acute{\ }\acute{\ } \right)\cos \gamma }{\sin \left( \gamma \acute{\ }\acute{\ }+\gamma  \right)\cos \left( \gamma \acute{\ }\acute{\ }-\gamma  \right)} \\
& \frac{E\acute{\ }{{\acute{\ }}_{||}}}{{{E}_{||}}}=\frac{2\sin \left( \gamma \acute{\ }\acute{\ } \right)\cos \gamma }{\sin \left( \gamma \acute{\ }\acute{\ }+\gamma  \right)\cos \left( \gamma \acute{\ }\acute{\ }-\gamma  \right)} \\
Line 174: Line 174:
Ebenso:
Ebenso:


<math>\begin{align}
:<math>\begin{align}
& {{R}_{||}}={{\left| \frac{E{{\acute{\ }}_{||}}}{{{E}_{||}}} \right|}^{2}}=\frac{{{\tan }^{2}}\left( \gamma \acute{\ }\acute{\ }-\gamma  \right)}{{{\tan }^{2}}\left( \gamma \acute{\ }\acute{\ }+\gamma  \right)}=1-{{T}_{||}} \\
& {{R}_{||}}={{\left| \frac{E{{\acute{\ }}_{||}}}{{{E}_{||}}} \right|}^{2}}=\frac{{{\tan }^{2}}\left( \gamma \acute{\ }\acute{\ }-\gamma  \right)}{{{\tan }^{2}}\left( \gamma \acute{\ }\acute{\ }+\gamma  \right)}=1-{{T}_{||}} \\
&  \\
&  \\
Line 182: Line 182:
Bei Reflexion und Brechung wird im Allgemeinen die Polarisationsrichtung gedreht. Speziell für den Fall
Bei Reflexion und Brechung wird im Allgemeinen die Polarisationsrichtung gedreht. Speziell für den Fall


<math>\begin{align}
:<math>\begin{align}
& \gamma \acute{\ }\acute{\ }+\gamma =\frac{\pi }{2} \\
& \gamma \acute{\ }\acute{\ }+\gamma =\frac{\pi }{2} \\
& ->\tan \left( \gamma \acute{\ }\acute{\ }+\gamma  \right)\to \infty  \\
& ->\tan \left( \gamma \acute{\ }\acute{\ }+\gamma  \right)\to \infty  \\
Line 200: Line 200:
'''Sei'''
'''Sei'''


<math>\begin{align}
:<math>\begin{align}
& {{\varepsilon }_{2}}<{{\varepsilon }_{1}} \\
& {{\varepsilon }_{2}}<{{\varepsilon }_{1}} \\
& \sin {{\gamma }_{G}}=\sqrt{\frac{{{\varepsilon }_{2}}}{{{\varepsilon }_{1}}}} \\
& \sin {{\gamma }_{G}}=\sqrt{\frac{{{\varepsilon }_{2}}}{{{\varepsilon }_{1}}}} \\
Line 208: Line 208:


Grenzwinkel der Totalreflexion ->
Grenzwinkel der Totalreflexion ->
<math>\gamma \acute{\ }\acute{\ }=\frac{\pi }{2}</math>
:<math>\gamma \acute{\ }\acute{\ }=\frac{\pi }{2}</math>


<math>\begin{align}
:<math>\begin{align}
& {{R}_{\bot }}={{R}_{||}}=1 \\
& {{R}_{\bot }}={{R}_{||}}=1 \\
& {{T}_{\bot }}={{T}_{||}}=0 \\
& {{T}_{\bot }}={{T}_{||}}=0 \\
\end{align}</math>
\end{align}</math>


<math>\begin{align}
:<math>\begin{align}
& {{\varepsilon }_{2}}<{{\varepsilon }_{1}} \\
& {{\varepsilon }_{2}}<{{\varepsilon }_{1}} \\
& \gamma >{{\gamma }_{G}}\Rightarrow  \\
& \gamma >{{\gamma }_{G}}\Rightarrow  \\
\end{align}</math>
\end{align}</math>


<math>k\acute{\ }\acute{\ }</math>
:<math>k\acute{\ }\acute{\ }</math>
wird imaginär -> es dringt kein reeller Strahl mehr ins Medium ein !
wird imaginär -> es dringt kein reeller Strahl mehr ins Medium ein !

Revision as of 17:52, 12 September 2010


{{#set:Urheber=Prof. Dr. E. Schöll, PhD|Inhaltstyp=Script|Kapitel=5|Abschnitt=6}} Kategorie:Elektrodynamik __SHOWFACTBOX__


Wir haben bereits gesehen, wie man aus den Stetigkeitsbedingungen mit Hilfe der integralen Maxwellgleichungen die Brechungsrelationen für die Feldvektoren herleiten kann. Nun soll dies für Lichtwellen wiederholt / vertieft werden:


Sogenannte Wellenausbreitung in geschichteten Medien Transparent ->

εiR
ωc1=|k¯|=|k¯´|=ω´c1|k¯´´|=ω´´c2ci=cni=cεii=1,2E¯(r¯,t)=E¯0ei(k¯r¯ωt)

Einfallende Welle:

E¯(r¯,t)=E¯0ei(k¯r¯ωt)

Reflektierte Welle:

E¯´(r¯,t)=E¯0´ei(k¯´r¯ω´t)

Transmittierte Welle:

E¯´´(r¯,t)=E¯0´´ei(k¯´´r¯ω´´t)

Grenzbedingungen für

E¯(r¯,t)

. Annahme: linear polarisiert:

E1+E1´|x3=0=E1´´|x3=0

-> Stetigkeit der Tangenzialkomponenten Diese Bedingungen werden nur an die Amplituden gestellt. Für die Phasen gibt es keine Bedingungen, besser gesagt:

Betrachte Situation für r=0

E¯01eiωt+E¯01´eiω´t=E¯01´´eiω´´tω=ω´=ω´´E¯01+E¯01´=E¯01´´

Das Snelliussche Brechungsgesetz können wir uns nicht als Amplitudenverhältnis anschauen, weil wir sonst wieder nur die Brechung der elektrischen Feldvektoren gewinnen. Aber: Wenn man ein Verhältnis der Beträge der k- Vektoren ( Ausbreitungsrichtung des Energiestroms) betrachtet, so ergibt sich das richtige Ausbreitungsgesetz:

Betrachte für t=0

E01eik1x1+E01´eik´1x1=E01´´eik1´´x1

Also:

k1=k1´=k1´´

Aber: ( Siehe Skizze) ! Dies gilt ja genau für die Anteile entlang x^1, also: muss man den Winkel dazunehmen und man gewinnt:

|k¯|sinγ=|k¯´|sinγ´=|k¯´´|sinγ´´|k¯|=ωc1|k¯´|=ωc1|k¯´´|=ωc2

Somit gewinnen wir Reflexions und Snelliussches Brechungsgesetz:

sinγ=sinγ´sinγ´´sinγ=c2c1=n1n2

Reflexions- und Brechungsgesetz

Bestimmung der Amplituden:

  1. Polarisation von E in der Einfallsebene

Stetigkeitsbedingungen: Normalkomponenten sind keine vorhanden -> Nur Tangentialkomponenten:

E01=E01´=E01´´=0E03=E03´=E03´´=0

Für die Tangentialkomp.:

E02+E02´=E02´´

Mit

B¯0=cωk¯×E¯0=cωE02(k30k1)

Somit folgt dann für die Tangentialkomponente von B:

B01+B01´=B01´´k3E02+k3´E´02=k3´´E02´´

mit dem Reflexionsgesetz.

k3=k3´
k3(E02E´02)=k3´´(E02+E02´)E´02E02=k3k3´´k3+k3´´E´´02E02=2k3k3+k3´´

Man muss nun nur

k3´´

über den Brechungswinkel

γ´´

ausdrücken und man gewinnt die Fresnelschen Formeln:

k3´´=|k¯´´|cosγ´´=|k¯´|n2n1cosγ´´n2n1=sinγsinγ´´k3´´=|k¯´´|cosγ´´=|k¯´|sinγsinγ´´cosγ´´k3=|k¯|cosγ

Also können wir dies in die gefundenen Formeln für die Amplitudenverhältnisse einsetzen und erhalten die Brechungsformeln ( Fresnelsche Formeln) nur noch in Abhängigkeit von den Winkeln:

Also:

E´02E02=cosγsinγ´´sinγcosγ´´cosγsinγ´´+sinγcosγ´´=sin(γ´´γ)sin(γ´´+γ)E´´02E02=2k3k3+k3´´=2sin(γ´´)cosγsin(γ´´+γ)

Intensitätsverhältnisse:

betrachte: Zeitmittel des Poynting- Vektors:

S¯=1T0Tdt(E¯×H¯)

Reflexionskoeffizient: ( bei senkrechter Polarisation)

R=|E´02E02|2=sin2(γ´´γ)sin2(γ´´+γ)

Transmissionskoeffizient ( bei senkrechter Polarisation)

T=|E´´02E02|2=4sin2(γ´´)cos2γsin2(γ´´+γ)=1R
  1. Polarisation von
  2. E¯||
  3. Einfallsebene:

Dadurch:

B¯

Einfallsebene

  • Analoge Argumentation:
B01=B01´=B01´´=0B03=B03´=B03´´=0B02+B02´=B02´´

usw... ebenfalls Bildung der Verhältnisse in Abhängigkeit von k -> wie beim Vorgehen in a) weiter rechnen. k durch Zwischenwinkel ausdrücken: Zur Übung berechnen, es ergibt sich:

E´||E||=tan(γ´´γ)tan(γ´´+γ)E´´||E||=2sin(γ´´)cosγsin(γ´´+γ)cos(γ´´γ)

Ebenso:

R||=|E´||E|||2=tan2(γ´´γ)tan2(γ´´+γ)=1T||

Bemerkung Bei Reflexion und Brechung wird im Allgemeinen die Polarisationsrichtung gedreht. Speziell für den Fall

γ´´+γ=π2>tan(γ´´+γ)R||=0

In diesem Fall kommt es nicht zu Teilpolarisation sondern: die reflektierte Welle wird vollständig polarisiert ( senkrecht zur Einfallsebene)

Totalreflexion Sei

ε2<ε1sinγG=ε2ε1

Totalreflexion unter diesem Winkel oder flacher !

Grenzwinkel der Totalreflexion ->

γ´´=π2
R=R||=1T=T||=0
ε2<ε1γ>γG
k´´

wird imaginär -> es dringt kein reeller Strahl mehr ins Medium ein !