Magnetische Multipole: Difference between revisions

From testwiki
Jump to navigation Jump to search
No edit summary
No edit summary
 
Line 1: Line 1:
<noinclude>{{Scripthinweis|Elektrodynamik|2|4}}</noinclude>
<noinclude>{{Scripthinweis|Elektrodynamik|2|4}}</noinclude>
 
== (stationär)==
(stationär)


Ausgangspunkt ist
Ausgangspunkt ist
Line 21: Line 20:
:<math>\bar{A}(\bar{r})=\frac{{{\mu }_{0}}}{4\pi r}\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }\bar{j}(\bar{r}\acute{\ })+\frac{{{\mu }_{0}}}{4\pi {{r}^{3}}}\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }\bar{j}(\bar{r}\acute{\ })\left( \bar{r}\cdot \bar{r}\acute{\ } \right)+...</math>
:<math>\bar{A}(\bar{r})=\frac{{{\mu }_{0}}}{4\pi r}\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }\bar{j}(\bar{r}\acute{\ })+\frac{{{\mu }_{0}}}{4\pi {{r}^{3}}}\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }\bar{j}(\bar{r}\acute{\ })\left( \bar{r}\cdot \bar{r}\acute{\ } \right)+...</math>


'''Monopol- Term'''
===Monopol- Term===


'''Mit'''
'''Mit'''
Line 27: Line 26:
:<math>{{\nabla }_{r\acute{\ }}}\cdot \left[ {{x}_{k}}\acute{\ }\bar{j}(\bar{r}\acute{\ }) \right]={{x}_{k}}\acute{\ }\left( {{\nabla }_{r\acute{\ }}}\cdot \bar{j}(\bar{r}\acute{\ }) \right)+\bar{j}(\bar{r}\acute{\ })\cdot \left( {{\nabla }_{r\acute{\ }}}{{x}_{k}}\acute{\ } \right)</math>
:<math>{{\nabla }_{r\acute{\ }}}\cdot \left[ {{x}_{k}}\acute{\ }\bar{j}(\bar{r}\acute{\ }) \right]={{x}_{k}}\acute{\ }\left( {{\nabla }_{r\acute{\ }}}\cdot \bar{j}(\bar{r}\acute{\ }) \right)+\bar{j}(\bar{r}\acute{\ })\cdot \left( {{\nabla }_{r\acute{\ }}}{{x}_{k}}\acute{\ } \right)</math>


Im stationären Fall folgt aus der Kontinuitätsgleichung:
Im stationären Fall folgt aus der {{FB|Kontinuitätsgleichung}}:


:<math>{{\nabla }_{r\acute{\ }}}\cdot \bar{j}(\bar{r}\acute{\ })=0</math>
:<math>{{\nabla }_{r\acute{\ }}}\cdot \bar{j}(\bar{r}\acute{\ })=0</math>
Line 33: Line 32:
:<math>{{\nabla }_{r\acute{\ }}}\cdot \left[ {{x}_{k}}\acute{\ }\bar{j}(\bar{r}\acute{\ }) \right]=\bar{j}(\bar{r}\acute{\ })\cdot \left( {{\nabla }_{r\acute{\ }}}{{x}_{k}}\acute{\ } \right)={{j}_{l}}{{\delta }_{kl}}={{j}_{k}}</math>
:<math>{{\nabla }_{r\acute{\ }}}\cdot \left[ {{x}_{k}}\acute{\ }\bar{j}(\bar{r}\acute{\ }) \right]=\bar{j}(\bar{r}\acute{\ })\cdot \left( {{\nabla }_{r\acute{\ }}}{{x}_{k}}\acute{\ } \right)={{j}_{l}}{{\delta }_{kl}}={{j}_{k}}</math>


Mit
Mit <math>{{\nabla }_{r\acute{\ }}}\cdot \left[ {{x}_{k}}\acute{\ }\bar{j}(\bar{r}\acute{\ }) \right]={{j}_{k}}</math> folgt dann:
:<math>{{\nabla }_{r\acute{\ }}}\cdot \left[ {{x}_{k}}\acute{\ }\bar{j}(\bar{r}\acute{\ }) \right]={{j}_{k}}</math>
folgt dann:


:<math>\int_{{}}^{{}}{{{d}^{3}}r\acute{\ }}{{j}_{k}}(\bar{r}\acute{\ })=\int_{{}}^{{}}{{{d}^{3}}r\acute{\ }}{{\nabla }_{r\acute{\ }}}\cdot \left[ {{x}_{k}}\acute{\ }\bar{j}(\bar{r}\acute{\ }) \right]=\oint\limits_{S\infty }{d\bar{f}}\left[ {{x}_{k}}\acute{\ }\bar{j}(\bar{r}\acute{\ }) \right]=0</math>
:<math>\int_{{}}^{{}}{{{d}^{3}}r\acute{\ }}{{j}_{k}}(\bar{r}\acute{\ })=\int_{{}}^{{}}{{{d}^{3}}r\acute{\ }}{{\nabla }_{r\acute{\ }}}\cdot \left[ {{x}_{k}}\acute{\ }\bar{j}(\bar{r}\acute{\ }) \right]=\oint\limits_{S\infty }{d\bar{f}}\left[ {{x}_{k}}\acute{\ }\bar{j}(\bar{r}\acute{\ }) \right]=0</math>


Somit verschwindet der Monopolterm in der Theorie
<u>Somit verschwindet der Monopolterm in der Theorie.</u>
 
'''Dipol- Term'''


mit
=== Dipol- Term ===


:<math>\left[ \bar{r}\acute{\ }\times \bar{j}(\bar{r}\acute{\ }) \right]\times \bar{r}=\left( \bar{r}\bar{r}\acute{\ } \right)\bar{j}-\left( \bar{r}\bar{j} \right)\bar{r}\acute{\ }=2\left( \bar{r}\bar{r}\acute{\ } \right)\bar{j}-\left[ \left( \bar{r}\bar{r}\acute{\ } \right)\bar{j}+\left( \bar{r}\bar{j} \right)\bar{r}\acute{\ } \right]</math>


und mit
mit <math>\left[ \bar{r}\acute{\ }\times \bar{j}(\bar{r}\acute{\ }) \right]\times \bar{r}=\left( \bar{r}\bar{r}\acute{\ } \right)\bar{j}-\left( \bar{r}\bar{j} \right)\bar{r}\acute{\ }=2\left( \bar{r}\bar{r}\acute{\ } \right)\bar{j}-\left[ \left( \bar{r}\bar{r}\acute{\ } \right)\bar{j}+\left( \bar{r}\bar{j} \right)\bar{r}\acute{\ } \right]</math> und mit


:<math>\begin{align}
:<math>\begin{align}
Line 67: Line 61:
:<math>\left[ \left( \bar{r}\bar{r}\acute{\ } \right)\bar{j}+\left( \bar{r}\bar{j} \right)\bar{r}\acute{\ } \right]</math>
:<math>\left[ \left( \bar{r}\bar{r}\acute{\ } \right)\bar{j}+\left( \bar{r}\bar{j} \right)\bar{r}\acute{\ } \right]</math>


keinen Beitrag zum
'''keinen Beitrag zum'''


:<math>\frac{{{\mu }_{0}}}{4\pi {{r}^{3}}}\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }\bar{j}(\bar{r}\acute{\ })\left( \bar{r}\cdot \bar{r}\acute{\ } \right)</math>
:<math>\frac{{{\mu }_{0}}}{4\pi {{r}^{3}}}\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }\bar{j}(\bar{r}\acute{\ })\left( \bar{r}\cdot \bar{r}\acute{\ } \right)</math>
Line 75: Line 69:
:<math>\bar{A}(\bar{r})=\frac{{{\mu }_{0}}}{4\pi {{r}^{3}}}\frac{1}{2}\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }\left( \bar{r}\acute{\ }\times \bar{j}(\bar{r}\acute{\ }) \right)\times \bar{r}</math>
:<math>\bar{A}(\bar{r})=\frac{{{\mu }_{0}}}{4\pi {{r}^{3}}}\frac{1}{2}\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }\left( \bar{r}\acute{\ }\times \bar{j}(\bar{r}\acute{\ }) \right)\times \bar{r}</math>


Als DIPOLPOTENZIAL!!
Als {{FB|Dipolpotenzial}}!!


:<math>\begin{align}
:<math>\begin{align}
Line 111: Line 105:


:<math>\bar{E}(\bar{r}):=\frac{1}{4\pi {{\varepsilon }_{0}}{{r}^{5}}}\left[ 3\left( \bar{p}\cdot \bar{r} \right)-{{r}^{2}}\bar{p} \right]</math>
:<math>\bar{E}(\bar{r}):=\frac{1}{4\pi {{\varepsilon }_{0}}{{r}^{5}}}\left[ 3\left( \bar{p}\cdot \bar{r} \right)-{{r}^{2}}\bar{p} \right]</math>
{{Beispiel|
{{Beispiel|1=
<u>'''Beispiel: Ebene Leiterschleife L:'''</u>
Beispiel: Ebene Leiterschleife L:




Line 130: Line 124:
die Normale auf der von L eingeschlossenen Fläche F
die Normale auf der von L eingeschlossenen Fläche F


Also: Ein Ringstrom bedingt ein magnetisches Dipolmoment
Also: Ein Ringstrom bedingt ein {{FB|magnetisches Dipolmoment}} <math>\bar{m}</math> }}
:<math>\bar{m}</math>
}}


analog: 2 Punktladungen bedingen ein elektrisches Dipolmoment
analog: 2 Punktladungen bedingen ein elektrisches Dipolmoment
Line 139: Line 131:




== Bewegte Ladungen ==
=== Bewegte Ladungen ===


N Teilchen mit den Massen m<sub>i</sub> und den Ladungen q<sub>i</sub> bewegen sich.
N Teilchen mit den Massen m<sub>i</sub> und den Ladungen q<sub>i</sub> bewegen sich.
Line 174: Line 166:
Somit ist der Spin nicht vollständig durch die Vorstellung von einer rotierenden Ladungsverteilung zu verstehen!
Somit ist der Spin nicht vollständig durch die Vorstellung von einer rotierenden Ladungsverteilung zu verstehen!


===Kraft auf eine Stromverteilung===
==== Kraft auf eine Stromverteilung ====


:<math>\bar{j}(\bar{r}\acute{\ })={{\rho }_{i}}(\bar{r}\acute{\ })\bar{v}(\bar{r}\acute{\ })</math>
:<math>\bar{j}(\bar{r}\acute{\ })={{\rho }_{i}}(\bar{r}\acute{\ })\bar{v}(\bar{r}\acute{\ })</math>

Latest revision as of 12:18, 16 September 2010


{{#set:Urheber=Prof. Dr. E. Schöll, PhD|Inhaltstyp=Script|Kapitel=2|Abschnitt=4}} __SHOWFACTBOX__


(stationär)[edit | edit source]

Ausgangspunkt ist

(mit der Coulomb- Eichung )


mit den Randbedingungen

für r→ unendlich

Taylorentwicklung nach

von analog zum elektrischen Fall:

Die Stromverteilung sei stationär für

Monopol- Term[edit | edit source]

Mit

Im stationären Fall folgt aus der Kontinuitätsgleichung{{#set:Fachbegriff=Kontinuitätsgleichung|Index=Kontinuitätsgleichung}}:

Mit folgt dann:

Somit verschwindet der Monopolterm in der Theorie.

Dipol- Term[edit | edit source]

mit und mit

Folgt:

Da

weil der Strom verschwindet! Somit gibt der Term

keinen Beitrag zum

Also:

Als Dipolpotenzial{{#set:Fachbegriff=Dipolpotenzial|Index=Dipolpotenzial}}!!

das magnetische Dipolmoment!

Analog zu

dem elektrischen Dipolmoment

Die magnetische Induktion des Dipolmomentes ergibt sich als:

Wegen:

mit

Analog ergab sich als elektrisches Dipolfeld:

Beispiel: Ebene Leiterschleife L:


Mit I = Strom durch den Leiter

Dabei ist

die Normale auf der von L eingeschlossenen Fläche F

Also: Ein Ringstrom bedingt ein magnetisches Dipolmoment{{#set:Fachbegriff=magnetisches Dipolmoment|Index=magnetisches Dipolmoment}}


analog: 2 Punktladungen bedingen ein elektrisches Dipolmoment

,
welches von der positiven zur negativen Ladung zeigt.


Bewegte Ladungen[edit | edit source]

N Teilchen mit den Massen mi und den Ladungen qi bewegen sich.

Dabei sei die spezifische Ladung konstant:

Das magnetische Dipolmoment{{#set:Fachbegriff=magnetische Dipolmoment|Index=magnetische Dipolmoment}} beträgt:

Mit dem Bahndrehimpuls{{#set:Fachbegriff=Bahndrehimpuls|Index=Bahndrehimpuls}} :

gilt aber auch für starre Körper!

  • Allgemeines Gesetz!

Jedoch gilt dies nicht für den Spin eines Elektrons!!!

Somit ist der Spin nicht vollständig durch die Vorstellung von einer rotierenden Ladungsverteilung zu verstehen!

Kraft auf eine Stromverteilung[edit | edit source]

im Feld einer externen magnetischen Induktion{{#set:Fachbegriff=magnetischen Induktion|Index=magnetischen Induktion}} :

Spürt die Lorentzkraft{{#set:Fachbegriff=Lorentzkraft|Index=Lorentzkraft}}

Talyorentwicklung liefert:

im stationären Fall gilt wieder:

(keine Monopole)

Also:

Man fordert:

(Das externe Feld soll keine Stromwirbel im Bereich von haben:

(Vergl. S. 34)