Hamilton-Jacobische Differenzialgleichung: Difference between revisions
Die Seite wurde neu angelegt: „<noinclude>{{Scripthinweis|Mechanik|5|1}}</noinclude> Der einfachste Fall, bei dem alle Koordinaten zyklisch sind: <math>\bar{H}\equiv 0</math> Allgemeiner w…“ |
*>SchuBot Einrückungen Mathematik |
||
Line 19: | Line 19: | ||
& (\bar{q},\bar{p})\to \left( \bar{Q},\bar{P} \right) \\ | & (\bar{q},\bar{p})\to \left( \bar{Q},\bar{P} \right) \\ | ||
& H(\bar{q},\bar{p},t)\to \bar{H}\left( \bar{Q},\bar{P} \right)=H+\frac{\partial S}{\partial t} \\ | & H(\bar{q},\bar{p},t)\to \bar{H}\left( \bar{Q},\bar{P} \right)=H+\frac{\partial S}{\partial t} \\ | ||
\end{align}</math> | \end{align}</math> mit <math>\begin{align} | ||
mit | |||
<math>\begin{align} | |||
& {{p}_{k}}=\frac{\partial S}{\partial {{q}_{k}}} \\ | & {{p}_{k}}=\frac{\partial S}{\partial {{q}_{k}}} \\ | ||
& {{Q}_{k}}=\frac{\partial S}{\partial {{P}_{k}}} \\ | & {{Q}_{k}}=\frac{\partial S}{\partial {{P}_{k}}} \\ | ||
Line 122: | Line 116: | ||
Nach Gleichungen 3) und 4) ist damit | Nach Gleichungen 3) und 4) ist damit | ||
<math>{{q}_{j}}(t)</math> | <math>{{q}_{j}}(t)</math> und <math>{{p}_{j}}(t)</math> | ||
und | |||
<math>{{p}_{j}}(t)</math> | |||
bestimmt | bestimmt | ||
Line 292: | Line 284: | ||
<math>\bar{u}\approx \nabla W(\bar{q})</math> | <math>\bar{u}\approx \nabla W(\bar{q})</math> mit <math>\bar{u}\bot W(\bar{q})=const</math> | ||
mit | |||
<math>\bar{u}\bot W(\bar{q})=const</math> | |||
Revision as of 16:06, 12 September 2010
65px|Kein GFDL | Der Artikel Hamilton-Jacobische Differenzialgleichung basiert auf der Vorlesungsmitschrift von Franz- Josef Schmitt des 5.Kapitels (Abschnitt 1) der Mechanikvorlesung von Prof. Dr. E. Schöll, PhD. |
|}}
{{#set:Urheber=Prof. Dr. E. Schöll, PhD|Inhaltstyp=Script|Kapitel=5|Abschnitt=1}} Kategorie:Mechanik __SHOWFACTBOX__
Der einfachste Fall, bei dem alle Koordinaten zyklisch sind:
Allgemeiner wähle man speziell als Erzeugende der kanonischen Trafo:
dann suchen wir die folgende Trafo:
So dass:
Dies ist eine Differenzialgleichung zur Bestimmung von S und der Koordinaten P und Q, die so genannte
Hamilton- Jacobi- Differenzialgleichung.
Eine nichtlineare partielle Differenzialgleichung erster Ordnung für
Also haben wir nur Abhängigkeit von f+1 Variablen:
Die kanonischen Gleichungen lauten:
Lösungsschema für die Hamilton- Jacobi DGL:
- Lösung der Ham- Jacobi-DGL:
- Aus der Erzeugenden
mit der implizierten Umkehrung:
möglich wegen
Somit ergeben sich f Gleichungen für q1,...qf
5. Bestimmung von
aus den Anfangsbedingungen:
Nach Gleichungen 3) und 4) ist damit
und
bestimmt
Physikalische Bedeutung von S:
S kann somit als Wirkungsfunktional interpretiert werden.
Beispiel: 1 dim Oszi
H als Hamiltonfunktion und S als Erzeugende der kanonischen Trafo mit
Hamilton- Jacobi DGL:
2. Lösungsansatz:
Dies ist als Separationsansatz nach q und t zu interpretieren. P ist ein Parameter
Dabei ist die linke Seite unabhängig von t und die rechte unabhängig von q. Die Lösung kann also nur dann für alle t und q übereinstimmen, wenn:
Es folgt:
Also:
Da Potenziale um skalare Faktoren verschoben werden können:
Mit der Nebenbedingung, dass Q=to ( Dimension: Zeit) !
5. Anfangsbedingungen: t=0: p(0)=0, q(0)=q0 ungleich 0 !
Alpha beschreibt also die Gesamtenergie. Physikalisch sinnvoll, da zu dieser Zeit nur potenzielle Energie vorhanden ist.
Also: P=E ( Energie) , Q= to ( Zeit) -> Energie und Zeit als neue verallgemeinerte Koordinaten bei der Transformation, die durch erzeugt wird.
Spezialfall:
Nicht explizit zeitabhängige Hamiltonfunktion H
H ist dann Integral der Bewegung
Hamilton- Jacobi DGL:
Lösungsansatz:
Somit folgt:
Energie bei skleronomen Zwangsbedingungen
heißt verkürztes Wirkungsfunktional
Dieses kann auch als Erzeugende einer kanonischen Trafo ( im engeren Sinn) aufgefasst werden:
Bezug zur Quantenmechanik
- Betrachten wir 1 Teilchen im Potenzial
Dabei sind Wirkunsgwellen mit einer Phasengeschwindigkeit
Der Teilchenimpuls eines fliegenden Teilchens dagegen berechnet such ebenfalls als Gradient der Erzeugenden:
Damit haben wir jedoch eine Betrachtung der " Wirkungswellen" entgegen einer Darstellung als Teilchen mit Impuls p ( Welle- Teilchen- Dualismus).
In jedem Fall erhält man als Hamilton- Jacobi- DiffGl:
Der Übergang zur Quantenmehcanik ist analog dem Übergang von der geometrischen Optik zur Wellenoptik ( Wellenoptik als geometrische Optik für große Wellenlängen) und geometrische optik als Wellenoptik für kleine Weglängen ( gut Übergangsresultate). Die typische optisch- mechanische Analogie
Wir erhalten in der quantenmechanischen Analogie als Wellenformalismus dagegen die Schödingergleichung:
links mit H = hamiltonoperator in Ortsdarstellung.
als Wellenfunktion
Unsere Koordinatentrafo lautet:
Auch hier sieht man die Analogie bei kleinen Wellenlängen, wenn folgende Näherung erlaubt ist:
Veranschaulichung der Zusammenhänge:
Aus der klassischen Mechanik gelangen wir durch Übergang von Poissonklammernauf Kommutatoren zur Heisenbergschen Matrizenmechanik, die sich zur Quantenmechanik transformieren läßt.
führt man in der klassischen Mechanik dagegen die Hamilton- Jacobi- Theorie ein ( optisch- mechanisches Analogon), so gelangt man leicht zur Wellenmechanik ( Schrödinger) und kann sich auf diesem Weg ebenso der Quantenmechanik nähern.