Symplektische Struktur des Phasenraums: Difference between revisions

From testwiki
Jump to navigation Jump to search
*>SchuBot
m Interpunktion, replaced: ! → ! (5), ( → ( (4)
Line 323: Line 323:
Dies ist die Symmetriegruppe der symplektischen Struktur.
Dies ist die Symmetriegruppe der symplektischen Struktur.


====Gruppeneigenschaften====
Furrealz? That's marvelosluy good to know.
 
1.  
:<math>{{M}_{1}},{{M}_{2}}\in S\Rightarrow {{M}_{3}}={{M}_{1}}{{M}_{2}}\in S</math>
 
 
Beweis:
:<math>{{M}_{3}}^{T}J{{M}_{3}}={{\left( {{M}_{1}}{{M}_{2}} \right)}^{T}}J\left( {{M}_{1}}{{M}_{2}} \right)={{M}_{2}}^{T}{{M}_{1}}^{T}J{{M}_{1}}{{M}_{2}}={{M}_{2}}^{T}J{{M}_{2}}=J</math>
 
 
2. Assoziativität (matrixmultiplikation!)
 
3. Einselement Einheitsmatrix!
 
# Inverse:
:<math>{{M}^{-1}}:={{J}^{-1}}{{M}^{T}}J</math>
 
Beweis:
:<math>{{M}^{-1}}M=\left( {{J}^{-1}}{{M}^{T}}J \right)M={{J}^{-1}}\left( {{M}^{T}}JM \right)={{J}^{-1}}J=1</math>
 
 
Dabei gilt :
:<math>{{M}^{T}},J\in S</math>
Beweis: Übungsaufgabe
 
# Weiter gilt:
:<math>\det M=1</math>
Beweis: Übungsaufgabe oder Scheck, S. 102
 
Fazit:
 
Die Invarianz der kanonischen Gleichungen
:<math>\dot{\bar{x}}:=A\bar{x}=J{{\bar{H}}_{,x}}</math>
kann durch di symplektische Struktur des Phasenraums beschrieben werden:
 
 
:<math>\begin{align}
  & {{{\dot{y}}}_{i}}=\sum\limits_{k}^{{}}{\frac{\partial {{y}_{i}}}{\partial {{x}_{k}}}{{{\dot{x}}}_{k}}}\Leftrightarrow \dot{\bar{y}}={{M}^{-1}}\dot{\bar{x}}=\left( {{J}^{-1}}{{M}^{T}}J \right)J{{{\bar{H}}}_{,x}} \\
& \frac{\partial \bar{H}}{\partial {{y}_{i}}}=\sum\limits_{k}^{{}}{\frac{\partial \bar{H}}{\partial {{x}_{k}}}\frac{\partial {{x}_{k}}}{\partial {{y}_{i}}}\Leftrightarrow {{{\bar{H}}}_{,y}}={{M}^{T}}{{{\bar{H}}}_{,x}}} \\
& \Rightarrow \dot{\bar{y}}=\left( {{J}^{-1}}{{M}^{T}}J \right)J{{\left( {{M}^{T}} \right)}^{-1}}{{{\bar{H}}}_{,y}}=-J\left( -1 \right){{M}^{T}}{{\left( {{M}^{T}} \right)}^{-1}}{{{\bar{H}}}_{,y}}=J{{{\bar{H}}}_{,y}} \\
\end{align}</math>

Revision as of 01:55, 2 July 2011


{{#set:Urheber=Prof. Dr. E. Schöll, PhD|Inhaltstyp=Script|Kapitel=4|Abschnitt=4}} Kategorie:Mechanik __SHOWFACTBOX__



Da die kanonischen Transformationen generalisierte Koordinaten und Impulse ineinander transformieren können, sollten q und p nicht gegeneinander ausgezeichnet sein. Um diese Symmetrie des kanonischen Formalismus auszuzeichnen, wird eine neue Notation eingeführt.

Sei zunächst f= 1


x¯:=(qp)

ist Vektor im Phasenraum


H,x:=(HqHp)

ist Ableitungsvektor


J:=(0110)

ist Metrik im Phasenraum (metrischer Tensor)

In diesem Fall lassen sich die kanonischen Gleichungen vereinfacht schreiben als:


x¯˙:=JH,xJx¯˙=H,xq˙=Hp,p˙=Hq


Leicht läßt sich zeigen:


J2=1J1=JT=J


Verallgemeinerung auf mehr Freiheitsgrade

x¯:=(q1...qfp1...pf)H¯x:=(Hq1...HqfHp1...Hpf)J:=(01f1f0)


Die kanonischen Gleichungen lauten


x¯˙:=JHxJx¯˙=Hx


Beispiel ist ein lineares autonomes System in einer Dimension, also der verallgemeinerte eindimensionale harmonische Oszillator:


x¯˙:=Ax¯=JHx


Diese Gleichung ist abzuleiten aus der Hamiltonfunktion:


H=12(aq2+2bqp+cp2)z.B.a=ω02,b=0,c=1


x¯˙:=(0110)(HqHp)=bq+cpaqbp


Somit ergibt sich eine Einschränkung an die Matrix A:


A=(bcab)tr(A)=0


Dies gilt für Hamiltonsche Systeme! (Einschränkung an die Dynamik im Phasenraum)

Kanonische Transformationen in kompakter Notation

Aus den 4 Äquivalenten Formen der Erzeugenden für kanonische Transformationen folgt:

M1(q¯,Q¯,t):pj=M1qjPj=M1QjpjQk=2M1Qkqj=Pkqj


M2(q¯,P¯,t)=M1(q¯,Q¯,t)j=1fM1QjQjpj=M2qjQj=M2PjpjPk=2M2Pkqj=Qkqj


M3(p¯,Q¯,t)=M1(q¯,Q¯,t)j=1fM1qjqjqj=M3pjPj=M3QjqjQk=2M3Qkpj=Pkpj


M4(p¯,P¯,t)=M1(q¯,Q¯,t)j=1f(M1QjQj+M1qjqj)qj=M4pjQj=M1Pj=qjqjPk=2M1Pkpj=Qkpj


Dabei sind:


x¯:=(q1...qfp1...pf)y¯:=(Q1...QfP1...Pf)


Mαβ=xαyβ(M1)αβ:=yαxβα,β=1,...,2f


Beweis:

γ=12fMαγ(M1)γβ=γ=12fxαyγyγxβ=xαxβ=δαβ


Damit läßt sich eine einheitliche Schreibweise finden für die Relationen aller Erzeugenden:


Mαβ=μ,ν=12fJαμJβν(M1)μν


Beweis:

In Matrixform lautet diese Gleichung:


M=J(JM1)T


Die linke Seite (M) lautet:


M=(qQqPpQpP)


Die rechte Seite lautet:


J(JM1)T=(0110)[(0110)(QqQpPqPp)]T=(0110)(PqPpQqQp)T=(0110)((Pq)T(Qq)T(Pp)T(Qp)T)=((Pp)T(Qp)T(Pq)T(Qq)T)


Die Matrixform für die Erzeugenden läßt sich folgendermaßen äquivalent umformen:


M=J(JM1)TJM=(JM1)T=(M1)TJTMTJM=MT(M1)TJT=(M1M)TJT=JT=JMTJM=J


Dabei ist J der metrische Tensor und M die Matrix der 2. Ableitungen der Erzeugenden der kanonischen Transformation, also die Jacobi- Matrix für die Erzeugenden der kanonischen Trafo.

Dies bedeutet jedoch nichts anderes als: Die Metrik im Phasenraum ist invariant unter kanonischen Transformationen!

J definiert dabei eine Metrik über das verallgemeinerte schiefsymmetrische Skalarprodukt:


(x¯,y¯):=x¯TJy¯=i,k=12fxiJikyk


es handelt sich dabei um eine schiefsymmetrische, nichtentartete Bilinearform

Eigenschaften:

  1. Schiefsymmetrie:
(x¯,y¯)=(y¯,x¯),
Beweis: 
(x¯,y¯)=x¯TJy¯=(y¯TJTx¯)T=y¯TJx¯=(y¯,x¯)
  1. bilinear:
(x¯,λ1y¯1+λ2y¯2)=λ1(x¯,y¯1)+λ2(x¯,y¯2)
  1. nichtentartet:
(x¯,y¯)=0y¯x¯=0


Nebenbemerkung: Es gilt:

(x¯,x¯)=0x¯
Also Selbstorthogonalität

Beweis:

x¯TJx¯=(qp)(0110)(qp)=qppq=0


Die Symplektische Struktur auf dem

R2f

ist von einer euklidischen Metrik grundsätzlich zu unterscheiden:


(x¯,y¯)Eu=ixiyi=x¯Tgy¯


Mit dem metrischen Tensor g, einer 2fx2f dimensionalen Einheitsmatrix!

Im Euklidischen gelten jedoch die Relationen:


(x¯,y¯)=(y¯,x¯)(x¯,x¯)0


Definition:

Die Menge der Matrizen M (kanonische Trafo) mit


MTJM=J

bildet die reelle symplektische Gruppe S über

R2f.


Dies ist die Symmetriegruppe der symplektischen Struktur.

Furrealz? That's marvelosluy good to know.