Räumliche Translationsinvarianz: Difference between revisions

From testwiki
Jump to navigation Jump to search
Die Seite wurde neu angelegt: „<noinclude>{{Scripthinweis|Mechanik|3|2}}</noinclude> Seien die Kräfte konservativ und seien keine Randbedingungen: <math>L=\frac{1}{2}\sum\limits_{i=1}^{N}{{{…“
 
*>SchuBot
Einrückungen Mathematik
Line 56: Line 56:




<math>{{\bar{r}}_{i}}={{\bar{r}}_{i}}({{q}_{1}},...,{{q}_{f}},t)={{q}_{1}}{{\bar{e}}_{x}}+\Delta {{\bar{r}}_{i}}({{q}_{1}},...,{{q}_{f}},t)</math>
<math>{{\bar{r}}_{i}}={{\bar{r}}_{i}}({{q}_{1}},...,{{q}_{f}},t)={{q}_{1}}{{\bar{e}}_{x}}+\Delta {{\bar{r}}_{i}}({{q}_{1}},...,{{q}_{f}},t)</math> mit <math>{{q}_{1}}{{\bar{e}}_{x}}</math>
 
 
mit
 
 
<math>{{q}_{1}}{{\bar{e}}_{x}}</math>
  als Schwerpunktskoordinate und
  als Schwerpunktskoordinate und


Line 76: Line 70:




<math>\frac{\partial }{\partial {{{\dot{q}}}_{1}}}{{\dot{\bar{r}}}_{i}}=\frac{\partial }{\partial {{q}_{1}}}{{\bar{r}}_{i}}={{\bar{e}}_{x}}</math>
<math>\frac{\partial }{\partial {{{\dot{q}}}_{1}}}{{\dot{\bar{r}}}_{i}}=\frac{\partial }{\partial {{q}_{1}}}{{\bar{r}}_{i}}={{\bar{e}}_{x}}</math> wegen <math>{{\dot{\bar{r}}}_{i}}=\sum\limits_{k}^{{}}{{}}\frac{\partial }{\partial {{q}_{k}}}{{\bar{r}}_{i}}{{\dot{q}}_{k}}+\frac{\partial }{\partial t}{{\bar{r}}_{i}}</math>
wegen
<math>{{\dot{\bar{r}}}_{i}}=\sum\limits_{k}^{{}}{{}}\frac{\partial }{\partial {{q}_{k}}}{{\bar{r}}_{i}}{{\dot{q}}_{k}}+\frac{\partial }{\partial t}{{\bar{r}}_{i}}</math>




Line 144: Line 136:




<math>I(\bar{r},\dot{\bar{r}})=\frac{\partial L}{\partial \dot{\bar{r}}}\cdot {{\frac{d{{h}^{s}}}{ds}}_{{}}}=\frac{\partial L}{\partial \dot{x}}={{P}_{x}}=const</math>
<math>I(\bar{r},\dot{\bar{r}})=\frac{\partial L}{\partial \dot{\bar{r}}}\cdot {{\frac{d{{h}^{s}}}{ds}}_{{}}}=\frac{\partial L}{\partial \dot{x}}={{P}_{x}}=const</math> wegen <math>\begin{align}
 
 
wegen
 
 
<math>\begin{align}
   & \frac{\partial L}{\partial \dot{\bar{r}}}={{\nabla }_{{\dot{r}}}}L \\
   & \frac{\partial L}{\partial \dot{\bar{r}}}={{\nabla }_{{\dot{r}}}}L \\
  & {{\frac{d{{h}^{s}}}{ds}}_{{}}}={{{\bar{e}}}_{x}} \\
  & {{\frac{d{{h}^{s}}}{ds}}_{{}}}={{{\bar{e}}}_{x}} \\

Revision as of 17:07, 12 September 2010


{{#set:Urheber=Prof. Dr. E. Schöll, PhD|Inhaltstyp=Script|Kapitel=3|Abschnitt=2}} Kategorie:Mechanik __SHOWFACTBOX__


Seien die Kräfte konservativ und seien keine Randbedingungen:


L=12i=1Nmir¯˙i2V(r¯1,...,r¯N)


Eine Translation in Richtung x ist damit eine Translation der Form:


hs:r¯ir¯i+se¯xi=1,..,N


Der Parameter s ist dabei beliebig.

Die Translationsinvarianz entlang der x- Achse bewirkt nun:


L(hs(r¯i),r¯˙i)=12i=1Nmir¯˙i2V(r¯1+se¯x,...,r¯N+se¯x)=L(r¯i,r¯˙i)Forderung!dLds=i=1N(rie¯x)V=i=1NxiV=0Forderung!


Das bedeutet aber: es darf keine äußere Kraft in x- Richtung geben !

Für die Transformation gilt:


hs(r¯i)=r¯i+se¯xi=1,..,N


hs=0(r¯i)=r¯i (Identität)


ddshs(r¯i)=e¯x


Für unser Integral der Bewegung gilt jedoch:


I=i=1Nr˙iLdhsds=imir¯˙ie¯x=imix˙i=Px


Fazit: die Translationsinvarianz in x- Richtung bestimmt die Erhaltung der x-Komponente des Gesamtimpulses.

Dieser Zusammenhang ist leicht für die anderen Komponenten zu zeigen.

Dies kann auch umgekehrt betrachtet werden:

Wähle q1=s als verallgemeinerte Koordinate:

Nun gilt die Transformation:


r¯i=r¯i(q1,...,qf,t)=q1e¯x+Δr¯i(q1,...,qf,t) mit q1e¯x

als Schwerpunktskoordinate und


Δr¯i(q1,...,qf,t)

als Relativpositionen.

Es folgt:


q1r¯i=e¯x


q˙1r¯˙i=q1r¯i=e¯x wegen r¯˙i=kqkr¯iq˙k+tr¯i


Invarianz Erhaltungssatz


Lq1=0ddtLq˙1=0

 äquivalent zum Erhaltungssatz

Lq˙1=const


Allgemein heißt Lq˙j=pj der zur Koordinate qj konjugierte verallgemeinerte Impuls.

Falls gilt dass Lq1=0ddtLq˙1=0 , wenn also die Lagrangefunktion invariant gegen q1- Änderungen ist, dann nennt man q1 eine zyklische Koordinate. der zu q1 konjugierte Impuls ist in diesem Fall eine Erhaltungsgröße .

Hier:


p1=Lq˙1=q˙1(TV)=Tq˙1=q˙1(i12mir¯˙i2)=imir¯˙iq˙1r¯˙imitq˙1r¯˙i=e¯xp1=imir¯˙ie¯x=Px


Verallgemeinerung auf Nichtkonservative Kräfte

ddtTq˙1Tq1=Q1=iX¯iq1r¯i=e¯xiX¯i


Xi kennzeichnet dabei die Kraft. Nun steht rechts also die resultierende Kraft in x- Richtung. Existiert keine resultierende Kraft in x- Richtung ( Translationsinvarianz in x- Richtung), so gilt:


ddtTq˙1Tq1=Q1=iX¯iq1r¯i=e¯xiX¯i=0


Invarianz sagt


Tq1=Q1=0ddtTq˙1=0Px=Tq˙1=const


Nebenbedingung für das fehlen konservativer Kräfte ( Falls Q1 konservative Kraft ist)


Q1=0q1V(r¯1+q1e¯x,...,r¯N+q1e¯x)=iriVq1(q1e¯x)=e¯xiriV=e¯xiX¯i=0


Beispiel: ein Teilchen im Potenzial V=V(y,z)

Das Potenzial hänge nicht von x ab: Lx=0


Daraus folgt: Lx˙=mx˙=Px=const


In diesem Fall existiert ein Integral der Bewegung:


I(r¯,r¯˙)=Lr¯˙dhsds=Lx˙=Px=const wegen Lr¯˙=r˙Ldhsds=e¯x


Beispiel: 2 Teilchen mit innerer Paarwechselwirkung

V(r¯1,r¯2)=V(r¯1r¯2)

 Das Potenzial kann auch anisotrop sein.

Es sollen keine äußeren Kräfte wirken, so dass das Potenzial unabhängig von den Schwerpunktskoordinaten wird.

Gleichzeitig soll Translationsinvarianz entlang x-, - und z- Richtung vorliegen:


L(r¯1,r¯2,r¯˙1,r¯˙2)=m12r¯˙12+m22r¯˙22V(r¯1r¯2)L(hs(r¯1),hs(r¯2),r¯˙1,r¯˙2)=m12r¯˙12+m22r¯˙22V((r¯1se¯i)(r¯2se¯i))=L(r¯1,r¯2,r¯˙1,r¯˙2) für alle i = x,y,z

Somit existieren gleich drei Integrale der Bewegung:


Ix=Lr¯˙1e¯x+Lr¯˙2e¯x=Lx˙1+Lx˙2=m1x˙1+m2x˙2=Px=constIy=Lr¯˙1e¯y+Lr¯˙2e¯y=Ly˙1+Ly˙2=m1y˙1+m2y˙2=Py=constIz=Lr¯˙1e¯z+Lr¯˙2e¯z=Lz˙1+Lz˙2=m1z˙1+m2z˙2=Pz=const


Dies ist, aufgrund des Fehlens äußerer Kräfte, gerade der Schwerpunkts- Erhaltungssatz:


MR¯˙=P¯=const


Mit den Schwerpunktskoordinaten


R¯:=1Mi=12mir¯i


Und der Gesamtmasse


M:=i=12mi