Kovariante Schreibweise der Relativitätstheorie: Difference between revisions

From testwiki
Jump to navigation Jump to search
No edit summary
*>SchuBot
Einrückungen Mathematik
Line 19: Line 19:
Der raumzeitliche Abstand
Der raumzeitliche Abstand


<math>{{\left( ds \right)}^{2}}:={{\left( cdt \right)}^{2}}-{{\left( d\bar{r} \right)}^{2}}</math>
:<math>{{\left( ds \right)}^{2}}:={{\left( cdt \right)}^{2}}-{{\left( d\bar{r} \right)}^{2}}</math>


ist in jedem Bezugssystem gleich, bleibt also invariant bei Transformationen zwischen Inertialsystemen ( Lorentz- Transformationen !)
ist in jedem Bezugssystem gleich, bleibt also invariant bei Transformationen zwischen Inertialsystemen ( Lorentz- Transformationen !)
Line 35: Line 35:
'''Def.:  '''Als kontravariante Komponenten des 4-Zeit-Orts-Vektors ( Vierervektors) bezeichnet man:
'''Def.:  '''Als kontravariante Komponenten des 4-Zeit-Orts-Vektors ( Vierervektors) bezeichnet man:


<math>\begin{align}
:<math>\begin{align}


& {{x}^{0}}:=ct \\
& {{x}^{0}}:=ct \\
Line 47: Line 47:
es schreibt sich
es schreibt sich


<math>{{\left( ds \right)}^{2}}={{\left( d{{x}^{0}} \right)}^{2}}-{{\left( d{{x}^{1}} \right)}^{2}}-{{\left( d{{x}^{2}} \right)}^{2}}-{{\left( d{{x}^{3}} \right)}^{2}}</math>
:<math>{{\left( ds \right)}^{2}}={{\left( d{{x}^{0}} \right)}^{2}}-{{\left( d{{x}^{1}} \right)}^{2}}-{{\left( d{{x}^{2}} \right)}^{2}}-{{\left( d{{x}^{3}} \right)}^{2}}</math>


'''Def.: '''als kovariante Komponenten des 4-Zeit-Orts-Vektors ( Vierervektors) bezeichnet man:
'''Def.: '''als kovariante Komponenten des 4-Zeit-Orts-Vektors ( Vierervektors) bezeichnet man:


<math>\begin{align}
:<math>\begin{align}


& {{x}_{0}}:={{x}^{0}} \\
& {{x}_{0}}:={{x}^{0}} \\
Line 61: Line 61:
Der kovariante Vektor ist Element des dualen Vektorraums <math>\tilde{V}</math>
Der kovariante Vektor ist Element des dualen Vektorraums <math>\tilde{V}</math>


<math>\tilde{V}</math>
:<math>\tilde{V}</math>


ist der Raum der linearen Funktionale l, die V auf R abbilden:
ist der Raum der linearen Funktionale l, die V auf R abbilden:


<math>\tilde{V}=\left\{ lineareFunktionale\quad l:V->R \right\}</math>
:<math>\tilde{V}=\left\{ lineareFunktionale\quad l:V->R \right\}</math>


es schreibt sich
es schreibt sich


<math>{{\left( ds \right)}^{2}}=d{{x}^{0}}d{{x}_{0}}+d{{x}^{1}}d{{x}_{1}}+d{{x}^{2}}d{{x}_{2}}+d{{x}^{3}}d{{x}_{3}}=d{{x}^{i}}d{{x}_{i}}</math>
:<math>{{\left( ds \right)}^{2}}=d{{x}^{0}}d{{x}_{0}}+d{{x}^{1}}d{{x}_{1}}+d{{x}^{2}}d{{x}_{2}}+d{{x}^{3}}d{{x}_{3}}=d{{x}^{i}}d{{x}_{i}}</math>


Natürlich mit Summenkonvention über i=0,1,2,3,...
Natürlich mit Summenkonvention über i=0,1,2,3,...
Line 80: Line 80:
gilt:
gilt:


<math>\begin{align}
:<math>\begin{align}


& {{a}_{0}}={{a}^{0}} \\
& {{a}_{0}}={{a}^{0}} \\
Line 93: Line 93:


=====Der d´Alemebert-Operator=====
=====Der d´Alemebert-Operator=====
<math>\#:=\Delta -\frac{1}{{{c}^{2}}}\frac{{{\partial }^{2}}}{\partial {{t}^{2}}}=-\frac{\partial }{\partial {{x}^{i}}}\frac{\partial }{\partial {{x}_{i}}}</math>
:<math>\#:=\Delta -\frac{1}{{{c}^{2}}}\frac{{{\partial }^{2}}}{\partial {{t}^{2}}}=-\frac{\partial }{\partial {{x}^{i}}}\frac{\partial }{\partial {{x}_{i}}}</math>


Mit
Mit


<math>\frac{\partial }{\partial {{x}^{i}}}=\left( \frac{1}{c}\frac{\partial }{\partial t},\frac{\partial }{\partial {{x}^{\alpha }}} \right)=:{{\partial }_{i}}</math>
:<math>\frac{\partial }{\partial {{x}^{i}}}=\left( \frac{1}{c}\frac{\partial }{\partial t},\frac{\partial }{\partial {{x}^{\alpha }}} \right)=:{{\partial }_{i}}</math>


kovariant
kovariant
Line 103: Line 103:
Die Eigenschaft der Kovarianz wird später aus dem Transformationsverhalten begründet !
Die Eigenschaft der Kovarianz wird später aus dem Transformationsverhalten begründet !


<math>\frac{\partial }{\partial {{x}_{i}}}=\left( \frac{1}{c}\frac{\partial }{\partial t},-\frac{\partial }{\partial {{x}^{\alpha }}} \right)=:{{\partial }^{i}}</math>
:<math>\frac{\partial }{\partial {{x}_{i}}}=\left( \frac{1}{c}\frac{\partial }{\partial t},-\frac{\partial }{\partial {{x}^{\alpha }}} \right)=:{{\partial }^{i}}</math>


kontravariant
kontravariant
Line 111: Line 111:
<u>'''Also:'''</u>
<u>'''Also:'''</u>


<math>\Rightarrow \ \#=-{{\partial }_{i}}{{\partial }^{i}}</math>
:<math>\Rightarrow \ \#=-{{\partial }_{i}}{{\partial }^{i}}</math>


<u>'''Vierergeschwindigkeit'''</u>
<u>'''Vierergeschwindigkeit'''</u>


<math>\begin{align}
:<math>\begin{align}


& {{u}^{i}}:=\frac{d{{x}^{i}}}{ds} \\
& {{u}^{i}}:=\frac{d{{x}^{i}}}{ds} \\
Line 127: Line 127:
Dabei gilt:
Dabei gilt:


<math>\begin{align}
:<math>\begin{align}


& \beta :=\frac{v}{c}=\frac{1}{c}\left| \frac{d\bar{r}}{dt} \right| \\
& \beta :=\frac{v}{c}=\frac{1}{c}\left| \frac{d\bar{r}}{dt} \right| \\
Line 137: Line 137:
Also:
Also:


<math>\begin{align}
:<math>\begin{align}


& {{u}^{0}}=\gamma  \\
& {{u}^{0}}=\gamma  \\
Line 147: Line 147:
Mit der Eigenzeit
Mit der Eigenzeit


<math>d\tau =\frac{dt}{\gamma }</math>
:<math>d\tau =\frac{dt}{\gamma }</math>


Die Eigenzeit ist als die Zeit im momentanen Ruhesystem zu verstehen !
Die Eigenzeit ist als die Zeit im momentanen Ruhesystem zu verstehen !


<math>{{u}^{i}}{{u}_{i}}=\frac{d{{x}^{i}}d{{x}_{i}}}{d{{s}^{2}}}=1</math>
:<math>{{u}^{i}}{{u}_{i}}=\frac{d{{x}^{i}}d{{x}_{i}}}{d{{s}^{2}}}=1</math>


ist nicht vom Bezugssystem abhängig, also invariant !
ist nicht vom Bezugssystem abhängig, also invariant !


=====Viererimpuls=====
=====Viererimpuls=====
<math>\begin{align}
:<math>\begin{align}


& {{p}^{i}}:={{m}_{0}}c{{u}^{i}} \\
& {{p}^{i}}:={{m}_{0}}c{{u}^{i}} \\
Line 176: Line 176:
folgt die Leistungsbilanz:
folgt die Leistungsbilanz:


<math>{{k}^{i}}{{u}_{i}}=\left[ \frac{d}{d\tau }\left( {{m}_{0}}c{{u}^{i}} \right) \right]{{u}_{i}}</math>
:<math>{{k}^{i}}{{u}_{i}}=\left[ \frac{d}{d\tau }\left( {{m}_{0}}c{{u}^{i}} \right) \right]{{u}_{i}}</math>


Mit Hilfe des Energiesatz kann dies umgewandelt werden zu
Mit Hilfe des Energiesatz kann dies umgewandelt werden zu


<math>\begin{align}
:<math>\begin{align}


& {{k}^{i}}{{u}_{i}}=\frac{{{m}_{0}}c}{2}\frac{d}{d\tau }\left( {{u}^{i}}{{u}_{i}} \right)=0 \\
& {{k}^{i}}{{u}_{i}}=\frac{{{m}_{0}}c}{2}\frac{d}{d\tau }\left( {{u}^{i}}{{u}_{i}} \right)=0 \\
Line 192: Line 192:
<u>'''Außerdem gilt:'''</u>
<u>'''Außerdem gilt:'''</u>


<math>\begin{align}
:<math>\begin{align}


& {{k}^{i}}{{u}_{i}}=\frac{d}{d\tau }\left( {{p}^{0}} \right){{u}_{0}}+{{k}^{\alpha }}{{u}_{\alpha }}=\gamma \frac{d}{d\tau }\left( {{p}^{0}} \right)+\frac{\gamma }{c}{{k}^{\alpha }}{{v}_{\alpha }}=\frac{\gamma }{c}\left[ \frac{d}{d\tau }\left( c{{p}^{0}} \right)-\bar{k}\bar{v} \right]=0 \\
& {{k}^{i}}{{u}_{i}}=\frac{d}{d\tau }\left( {{p}^{0}} \right){{u}_{0}}+{{k}^{\alpha }}{{u}_{\alpha }}=\gamma \frac{d}{d\tau }\left( {{p}^{0}} \right)+\frac{\gamma }{c}{{k}^{\alpha }}{{v}_{\alpha }}=\frac{\gamma }{c}\left[ \frac{d}{d\tau }\left( c{{p}^{0}} \right)-\bar{k}\bar{v} \right]=0 \\
Line 218: Line 218:
Also folgt an die Energie:
Also folgt an die Energie:


<math>{{E}^{2}}={{m}_{0}}^{2}{{c}^{4}}+{{c}^{2}}{{\bar{p}}^{2}}</math>
:<math>{{E}^{2}}={{m}_{0}}^{2}{{c}^{4}}+{{c}^{2}}{{\bar{p}}^{2}}</math>


Dies ist die relativistsiche Energie- Impuls- Beziehung
Dies ist die relativistsiche Energie- Impuls- Beziehung
Line 239: Line 239:
Es gilt:
Es gilt:


<math>\begin{align}
:<math>\begin{align}


& {{A}^{00}}={{A}^{0}}_{0}={{A}_{0}}^{0}={{A}_{00}} \\
& {{A}^{00}}={{A}^{0}}_{0}={{A}_{0}}^{0}={{A}_{00}} \\
Line 253: Line 253:
Die Spur eines Tensors ist dagegen wieder allgemein:
Die Spur eines Tensors ist dagegen wieder allgemein:


<math>spA={{A}^{i}}_{i}={{A}_{i}}^{i}</math>
:<math>spA={{A}^{i}}_{i}={{A}_{i}}^{i}</math>


=====- er Einheitstensor=====
=====- er Einheitstensor=====
<math>{{\delta }^{k}}_{i}={{\delta }_{i}}^{k}</math>
:<math>{{\delta }^{k}}_{i}={{\delta }_{i}}^{k}</math>


wie beim Kronecker- Symbol 1 für i=k und sonst Null, also symmetrisch
wie beim Kronecker- Symbol 1 für i=k und sonst Null, also symmetrisch


<math>\begin{align}
:<math>\begin{align}


& {{\delta }_{i}}^{k}{{a}^{k}}={{a}^{i}} \\
& {{\delta }_{i}}^{k}{{a}^{k}}={{a}^{i}} \\
Line 272: Line 272:
<u>'''Der metrische Tensor'''</u>
<u>'''Der metrische Tensor'''</u>


<math>\begin{align}
:<math>\begin{align}


& {{g}^{ik}}:={{\delta }^{ik}}={{\delta }^{i}}_{k}\quad f\ddot{u}r\ k=0 \\
& {{g}^{ik}}:={{\delta }^{ik}}={{\delta }^{i}}_{k}\quad f\ddot{u}r\ k=0 \\
Line 298: Line 298:
Also:
Also:


<math>{{g}^{ik}}{{a}_{k}}={{\delta }^{ik}}{{a}_{k}}={{a}^{i}}\quad f\ddot{u}r\ i=0,1,2,3</math>
:<math>{{g}^{ik}}{{a}_{k}}={{\delta }^{ik}}{{a}_{k}}={{a}^{i}}\quad f\ddot{u}r\ i=0,1,2,3</math>


Man spricht auch vom heben und Senken der Indices durch die Metrik !
Man spricht auch vom heben und Senken der Indices durch die Metrik !
Line 304: Line 304:
=====Lorentz- Trnsformationen ( linear, homogen) <math>\Sigma \to \Sigma \acute{\ }</math>=====
=====Lorentz- Trnsformationen ( linear, homogen) <math>\Sigma \to \Sigma \acute{\ }</math>=====


<math>\begin{align}
:<math>\begin{align}


& x{{\acute{\ }}^{i}}={{U}^{i}}_{k}{{x}^{k}} \\
& x{{\acute{\ }}^{i}}={{U}^{i}}_{k}{{x}^{k}} \\
Line 326: Line 326:
Somit:
Somit:


<math>{{U}^{k}}_{i}=\left( \begin{matrix}
:<math>{{U}^{k}}_{i}=\left( \begin{matrix}


\gamma  & \beta \gamma  & 0 & 0  \\
\gamma  & \beta \gamma  & 0 & 0  \\
Line 342: Line 342:
Damit läßt sich die Invarianz des Skalaprodukts leicht zeigen:
Damit läßt sich die Invarianz des Skalaprodukts leicht zeigen:


<math>\begin{align}
:<math>\begin{align}


& a{{\acute{\ }}^{i}}={{U}^{i}}_{k}{{a}^{k}} \\
& a{{\acute{\ }}^{i}}={{U}^{i}}_{k}{{a}^{k}} \\
Line 360: Line 360:
'''Umkehr- Transformation:'''
'''Umkehr- Transformation:'''


<math>\begin{align}
:<math>\begin{align}


& {{a}^{i}}={{U}_{k}}^{i}a{{\acute{\ }}^{k}} \\
& {{a}^{i}}={{U}_{k}}^{i}a{{\acute{\ }}^{k}} \\
Line 370: Line 370:
Denn:
Denn:


<math>{{U}_{k}}^{i}{{U}^{k}}_{l}{{a}^{l}}={{\delta }^{i}}_{l}{{a}^{l}}={{a}^{i}}</math>
:<math>{{U}_{k}}^{i}{{U}^{k}}_{l}{{a}^{l}}={{\delta }^{i}}_{l}{{a}^{l}}={{a}^{i}}</math>


In Matrizenschreibweise:
In Matrizenschreibweise:


<math>\begin{align}
:<math>\begin{align}


& {{U}^{i}}_{k}=\left( \begin{matrix}
& {{U}^{i}}_{k}=\left( \begin{matrix}
Line 423: Line 423:


=====Transformationsverhalten des Vierergradienten=====
=====Transformationsverhalten des Vierergradienten=====
<math>\frac{\partial }{\partial {{x}^{i}}}:={{\partial }_{i}}=\frac{\partial }{\partial x{{\acute{\ }}^{k}}}\frac{\partial x{{\acute{\ }}^{k}}}{\partial {{x}^{i}}}={{U}^{k}}_{i}\frac{\partial }{\partial x{{\acute{\ }}^{k}}}={{U}^{k}}_{i}\partial {{\acute{\ }}_{k}}</math>
:<math>\frac{\partial }{\partial {{x}^{i}}}:={{\partial }_{i}}=\frac{\partial }{\partial x{{\acute{\ }}^{k}}}\frac{\partial x{{\acute{\ }}^{k}}}{\partial {{x}^{i}}}={{U}^{k}}_{i}\frac{\partial }{\partial x{{\acute{\ }}^{k}}}={{U}^{k}}_{i}\partial {{\acute{\ }}_{k}}</math>


Mit der Identität
Mit der Identität


<math>\frac{\partial x{{\acute{\ }}^{k}}}{\partial {{x}^{i}}}={{U}^{k}}_{i}</math>
:<math>\frac{\partial x{{\acute{\ }}^{k}}}{\partial {{x}^{i}}}={{U}^{k}}_{i}</math>


Das heißt jedoch
Das heißt jedoch


<math>\frac{\partial }{\partial {{x}^{i}}}</math>
:<math>\frac{\partial }{\partial {{x}^{i}}}</math>


transformiert sich wie <math>{{a}_{i}}</math>
transformiert sich wie <math>{{a}_{i}}</math>
Line 439: Line 439:
Analog kann gezeigt werden:
Analog kann gezeigt werden:


<math>\frac{\partial }{\partial {{x}_{i}}}:={{\partial }^{i}}=\frac{\partial }{\partial x{{\acute{\ }}_{k}}}\frac{\partial x{{\acute{\ }}_{k}}}{\partial {{x}_{i}}}={{U}_{k}}^{i}\frac{\partial }{\partial x{{\acute{\ }}_{k}}}</math>
:<math>\frac{\partial }{\partial {{x}_{i}}}:={{\partial }^{i}}=\frac{\partial }{\partial x{{\acute{\ }}_{k}}}\frac{\partial x{{\acute{\ }}_{k}}}{\partial {{x}_{i}}}={{U}_{k}}^{i}\frac{\partial }{\partial x{{\acute{\ }}_{k}}}</math>


<math>\frac{\partial }{\partial {{x}_{i}}}</math>
:<math>\frac{\partial }{\partial {{x}_{i}}}</math>


transformiert sich wie <math>{{a}^{i}}</math>
transformiert sich wie <math>{{a}^{i}}</math>


, also kontravariant.  ( PRÜFEN !)
, also kontravariant.  ( PRÜFEN !)

Revision as of 16:42, 12 September 2010


{{#set:Urheber=Prof. Dr. E. Schöll, PhD|Inhaltstyp=Script|Kapitel=7|Abschnitt=1}} Kategorie:Quantenmechanik __SHOWFACTBOX__


Grundpostulat der speziellen Relativitätstheorie:

kein Inertialsystem ist gegenüber einem anderen ausgezeichnet ( es existiert kein Ruhezustand)

Einstein, 1904

Eine Bewegung ist vom Ruhezustand nicht zu unterscheiden, so lange sie nicht zu einer anderen Bewegung in Relation gesetzt wird !

Die Lichtgeschwindigkeit c ist in jedem Inertialsystem gleich !!

Also: r¯2c2t2=r¯´2c2t´2

Kugelwellen mit der Ausbreitungsgeschwindigkeit c sind Lorentz- invariant !

Formalisierung

Der raumzeitliche Abstand

(ds)2:=(cdt)2(dr¯)2

ist in jedem Bezugssystem gleich, bleibt also invariant bei Transformationen zwischen Inertialsystemen ( Lorentz- Transformationen !)

Man kann (ds)2

als Skalarprodukt von Vierervektoren mit 3 Orts- und einer Zeitkomponente schreiben.

Diese Vektoren leben im Minkowski- Raum V (Spannen diesen auf).

V ist natürlich nicht euklidisch. Sonst würde Pythagoras gelten!

Dann benutze man den Formalismus der LINEAREN ORTHOGONALEN Transformationen, unter denen das Skalarprodukt invariant ist:

Def.: Als kontravariante Komponenten des 4-Zeit-Orts-Vektors ( Vierervektors) bezeichnet man:

x0:=ctxα,α=1,2,3

Zeitkomponente und kartesische Komponenten des Ortsvektors r¯

es schreibt sich

(ds)2=(dx0)2(dx1)2(dx2)2(dx3)2

Def.: als kovariante Komponenten des 4-Zeit-Orts-Vektors ( Vierervektors) bezeichnet man:

x0:=x0xα:=xαα=1,2,3

Der kovariante Vektor ist Element des dualen Vektorraums V~

V~

ist der Raum der linearen Funktionale l, die V auf R abbilden:

V~={lineareFunktionalel:V>R}

es schreibt sich

(ds)2=dx0dx0+dx1dx1+dx2dx2+dx3dx3=dxidxi

Natürlich mit Summenkonvention über i=0,1,2,3,...

Wenn ein Index oben ( kontravariant) und ein Index unten ( kovariant) steht.

Verallgemeinerung

Für beliebige 4- Vektoren ai

gilt:

a0=a0aα=aαα=1,2,3

Lorentz- Invariante lassen sich als Skalarprodukt aiai

schreiben:

Der d´Alemebert-Operator
#:=Δ1c22t2=xixi

Mit

xi=(1ct,xα)=:i

kovariant

Die Eigenschaft der Kovarianz wird später aus dem Transformationsverhalten begründet !

xi=(1ct,xα)=:i

kontravariant

-> Die Eigenschaft der Kontravarianz wird später aus dem Transformationsverhalten begründet !

Also:

#=ii

Vierergeschwindigkeit

ui:=dxidsds=(dxidxi)12=(c2dt2(dr¯)2)12=c[1(1cdr¯dt)2]12dtds:=(1β2)12dt=cγdt

Dabei gilt:

β:=vc=1c|dr¯dt|γ:=11β2

Also:

u0=γuα=γcvα=1cdxαdτ

Mit der Eigenzeit

dτ=dtγ

Die Eigenzeit ist als die Zeit im momentanen Ruhesystem zu verstehen !

uiui=dxidxids2=1

ist nicht vom Bezugssystem abhängig, also invariant !

Viererimpuls
pi:=m0cuipipi=m02c2uiui=m02c2p0=m0c1(vc)2=m(v)c=p0pα=m0vα1(vc)2=m(v)vα=pα

Physikalische Bedeutung von p0

Mit der 4-er Kraft: ki:=ddτpi

folgt die Leistungsbilanz:

kiui=[ddτ(m0cui)]ui

Mit Hilfe des Energiesatz kann dies umgewandelt werden zu

kiui=m0c2ddτ(uiui)=0uiui=1

also lorentzinvariant !

Außerdem gilt:

kiui=ddτ(p0)u0+kαuα=γddτ(p0)+γckαvα=γc[ddτ(cp0)k¯v¯]=0(cp0)=Energiek¯v¯=Leistung

Somit jedoch folgt eine Bestimmungsgleichung an (p0)=Ec

, also E=m0c2(1β2)

als Energie eines relativistischen Teilchens.

Das Skalarprodukt des Viererimpulses liefert lorentzinvariant pipi=E2c2p¯2=m02c2p¯=m0v¯1β2

Also folgt an die Energie:

E2=m02c4+c2p¯2

Dies ist die relativistsiche Energie- Impuls- Beziehung

Mathematischer Formalismus zur Tensorrechnung:

Für Tensoren zweiter Stufe gilt:

Möglich ist: AikAikAikAik

Es gilt:

A00=A00=A00=A00A10=A10=A10=A10A11=A11=A11=A11usw...

Die Spur eines Tensors ist dagegen wieder allgemein:

spA=Aii=Aii
- er Einheitstensor
δki=δik

wie beim Kronecker- Symbol 1 für i=k und sonst Null, also symmetrisch

δikak=aiδikakl=ail

usw..

Der metrische Tensor

gik:=δik=δikfu¨rk=0gik:=δik=δikfu¨rk=1,2,3gik:=δik=(1111)=gikgikak=δikak=aifu¨ri=0ai=aigikak=δikak=aifu¨ri=1,2,3ai=ai

Also:

gikak=δikak=aifu¨ri=0,1,2,3

Man spricht auch vom heben und Senken der Indices durch die Metrik !

Lorentz- Trnsformationen ( linear, homogen) ΣΣ´
x´i=UikxkUik=(γβγ00βγγ0000100001)

für v||x1

Somit:

Uki=(γβγ00βγγ0000100001)

Wobei γ2=11β2

Damit läßt sich die Invarianz des Skalaprodukts leicht zeigen:

a´i=Uikakb´i=Uikbkb´i=Uikbk=Uikbka´ib´i=UikUilakbl=!=akbkalso:UikUil=δkl

U ist also eine orthogonale Trafo

Umkehr- Transformation:

ai=Ukia´kai=Ukia´k

Denn:

UkiUklal=δilal=ai

In Matrizenschreibweise:

Uik=(γβγ00βγγ0000100001)Ukl=(γβγ00βγγ0000100001)UikUkl=(γ2β2γ20000β2γ2+γ20000100001)=(1000010000100001)=δil
Transformationsverhalten des Vierergradienten
xi:=i=x´kx´kxi=Ukix´k=Uki´k

Mit der Identität

x´kxi=Uki

Das heißt jedoch

xi

transformiert sich wie ai

, also kovariant

Analog kann gezeigt werden:

xi:=i=x´kx´kxi=Ukix´k
xi

transformiert sich wie ai

, also kontravariant. ( PRÜFEN !)