Addition von Drehimpulsen: Difference between revisions

From testwiki
Jump to navigation Jump to search
*>SchuBot
No edit summary
*>SchuBot
Einrückungen Mathematik
Line 3: Line 3:
Der Gesamtdrehimpuls kann folgendermaßen dargestellt werden:
Der Gesamtdrehimpuls kann folgendermaßen dargestellt werden:


<math>\hat{\bar{J}}=\hat{\bar{L}}+\hat{\bar{S}}</math>
:<math>\hat{\bar{J}}=\hat{\bar{L}}+\hat{\bar{S}}</math>


Die Vertauschungsrelationen:
Die Vertauschungsrelationen:


<math>\left[ {{{\hat{L}}}_{j}},{{{\hat{S}}}_{k}} \right]=0</math>
:<math>\left[ {{{\hat{L}}}_{j}},{{{\hat{S}}}_{k}} \right]=0</math>


Beide Operatoren wirken in verschiedenen Räumen. Wäre der Operator nicht Null, so wären die zugehörigen Eigenzustände nicht separabel.
Beide Operatoren wirken in verschiedenen Räumen. Wäre der Operator nicht Null, so wären die zugehörigen Eigenzustände nicht separabel.


<math>\begin{align}
:<math>\begin{align}


& \Rightarrow \left[ {{{\hat{J}}}_{j}},{{{\hat{J}}}_{k}} \right]=\left[ {{{\hat{L}}}_{j}},{{{\hat{L}}}_{k}} \right]+\left[ {{{\hat{S}}}_{j}},{{{\hat{S}}}_{k}} \right] \\
& \Rightarrow \left[ {{{\hat{J}}}_{j}},{{{\hat{J}}}_{k}} \right]=\left[ {{{\hat{L}}}_{j}},{{{\hat{L}}}_{k}} \right]+\left[ {{{\hat{S}}}_{j}},{{{\hat{S}}}_{k}} \right] \\
Line 25: Line 25:
Drehimpuls Vertauschungsrelationen !
Drehimpuls Vertauschungsrelationen !


<math>\left[ {{{\hat{J}}}^{2}},{{{\hat{L}}}_{3}} \right]=\left[ {{{\hat{L}}}^{2}}+{{{\hat{\bar{S}}}}^{2}}+2\hat{\bar{L}}\cdot \hat{\bar{S}},{{{\hat{L}}}_{3}} \right]=2{{\hat{\bar{S}}}_{j}}\left[ {{{\hat{L}}}_{j}},{{{\hat{L}}}_{3}} \right]=2i\hbar \left( {{{\hat{S}}}_{2}}{{{\hat{L}}}_{1}}-{{{\hat{S}}}_{1}}{{{\hat{L}}}_{2}} \right)\ne 0</math>
:<math>\left[ {{{\hat{J}}}^{2}},{{{\hat{L}}}_{3}} \right]=\left[ {{{\hat{L}}}^{2}}+{{{\hat{\bar{S}}}}^{2}}+2\hat{\bar{L}}\cdot \hat{\bar{S}},{{{\hat{L}}}_{3}} \right]=2{{\hat{\bar{S}}}_{j}}\left[ {{{\hat{L}}}_{j}},{{{\hat{L}}}_{3}} \right]=2i\hbar \left( {{{\hat{S}}}_{2}}{{{\hat{L}}}_{1}}-{{{\hat{S}}}_{1}}{{{\hat{L}}}_{2}} \right)\ne 0</math>


Ebenso:
Ebenso:


<math>\left[ {{{\hat{J}}}^{2}},{{{\hat{S}}}_{3}} \right]\ne 0</math>
:<math>\left[ {{{\hat{J}}}^{2}},{{{\hat{S}}}_{3}} \right]\ne 0</math>


Also:
Also:
Line 45: Line 45:
Dies muss möglich sein, da
Dies muss möglich sein, da


<math>\begin{align}
:<math>\begin{align}


& \left[ {{{\hat{J}}}^{2}},{{{\hat{L}}}^{2}} \right]=\left[ {{{\hat{L}}}^{2}}+{{{\hat{\bar{S}}}}^{2}}+2\hat{\bar{L}}\cdot \hat{\bar{S}},{{{\hat{L}}}^{2}} \right]=0 \\
& \left[ {{{\hat{J}}}^{2}},{{{\hat{L}}}^{2}} \right]=\left[ {{{\hat{L}}}^{2}}+{{{\hat{\bar{S}}}}^{2}}+2\hat{\bar{L}}\cdot \hat{\bar{S}},{{{\hat{L}}}^{2}} \right]=0 \\
Line 59: Line 59:
Die Eigenwertgleichungen lauten:
Die Eigenwertgleichungen lauten:


<math>\begin{align}
:<math>\begin{align}


& {{{\hat{J}}}^{2}}\left| j{{m}_{j}}ls \right\rangle ={{\hbar }^{2}}(j(j+1))\left| j{{m}_{j}}ls \right\rangle  \\
& {{{\hat{J}}}^{2}}\left| j{{m}_{j}}ls \right\rangle ={{\hbar }^{2}}(j(j+1))\left| j{{m}_{j}}ls \right\rangle  \\
Line 77: Line 77:
entwickelt werden:
entwickelt werden:


<math>\left| j{{m}_{j}}ls \right\rangle =\sum\limits_{\begin{smallmatrix}
:<math>\left| j{{m}_{j}}ls \right\rangle =\sum\limits_{\begin{smallmatrix}


m \\
m \\
Line 91: Line 91:
{{FB|Clebsch-Gordan-Koeffizienten}} !
{{FB|Clebsch-Gordan-Koeffizienten}} !


<math>\left\langle  lms{{m}_{s}}  |  j{{m}_{j}}ls \right\rangle </math>
:<math>\left\langle  lms{{m}_{s}}  |  j{{m}_{j}}ls \right\rangle </math>


Dabei gilt:
Dabei gilt:
Line 106: Line 106:
Wobei:
Wobei:


<math>\begin{align}
:<math>\begin{align}


& j=l\pm \frac{1}{2} \\
& j=l\pm \frac{1}{2} \\

Revision as of 16:35, 12 September 2010


{{#set:Urheber=Prof. Dr. E. Schöll, PhD|Inhaltstyp=Script|Kapitel=4|Abschnitt=4}} Kategorie:Quantenmechanik __SHOWFACTBOX__


Der Gesamtdrehimpuls kann folgendermaßen dargestellt werden:

Die Vertauschungsrelationen:

Beide Operatoren wirken in verschiedenen Räumen. Wäre der Operator nicht Null, so wären die zugehörigen Eigenzustände nicht separabel.

Drehimpuls Vertauschungsrelationen !

Ebenso:

Also:

Die Produktzustände sind Eigenzustände zu aber nicht zu , da bzw.

Ziel: Suche gemeinsame Eigenzustände zu

,

,

.

Dies muss möglich sein, da

Die Eigenwertgleichungen lauten:

Durch Einschub eines Vollständigen Satzes orthonormierter Eigenfunktionen, durch Einschub eines Projektors auf diesen vollständigen atz, also durch Einschub einer "1" kann der neue Eigenzustand

bezüglich des alten Zustandes

entwickelt werden:

Zu beachten ist: Es wird ausschließlich über die Komponenten der alten Basis summiert, die sich von der neuen Basis unterscheiden ( das heißt: Nur dieser Teil der Basis wird transformiert) !

Dabei heißen die Entwicklungskoeffizienten der neuen Basis bezüglich der alten Basisvektoren, also die Koordinaten der neuen Basis in der alten Basis

Clebsch-Gordan-Koeffizienten{{#set:Fachbegriff=Clebsch-Gordan-Koeffizienten|Index=Clebsch-Gordan-Koeffizienten}} !

Dabei gilt:

Wobei: