|   |     | 
| Line 1: | Line 1: | 
|  | {{Scripthinweis|Elektrodynamik|6}}
 |  | </noinclude>{{Scripthinweis|Elektrodynamik|6|0}}</noinclude> | 
|  |   |  | 
|  | = Ko- und Kontravariante Schreibweise der Relativitätstheorie=
 |  | 
|  |   |  | 
|  | Grundpostulat der speziellen Relativitätstheorie:
 |  | 
|  |   |  | 
|  | Kein Inertialsystem ist gegenüber einem anderen ausgezeichnet ! ( Einstein, 1904).
 |  | 
|  | Die Lichtgeschwindigkeit c ist in jedem Inertialsystem gleich !
 |  | 
|  | * Kugelwellen sind
 |  | 
|  | * -> Lorentz- Invariant, also:
 |  | 
|  | *
 |  | 
|  | * <math>{{r}^{2}}-{{c}^{2}}{{t}^{2}}=r{{\acute{\ }}^{2}}-{{c}^{2}}t{{\acute{\ }}^{2}}</math>
 |  | 
|  | *
 |  | 
|  |   |  | 
|  | Für Lorentz- Transformationen !
 |  | 
|  |   |  | 
|  | <u>'''Formalisierung:'''</u>
 |  | 
|  | <u>'''Der Raumzeitliche Abstand als'''</u>
 |  | 
|  |   |  | 
|  | <math>{{\left( ds \right)}^{2}}:={{\left( cdt \right)}^{2}}-{{\left( d\bar{r} \right)}^{2}}</math>
 |  | 
|  |   |  | 
|  | Zwischen 2 Ereignissen bleibt der raumzeitliche Abstand invariant bei Lorentz- Transformationen ! zwischen den Inertialsystemen :
 |  | 
|  | <math>\Sigma \leftrightarrow \Sigma \acute{\ }</math>
 |  | 
|  |   |  | 
|  | Ziel: Um dies sofort zu sehen führt man Vierervektoren ein.
 |  | 
|  | Dann schreibt man
 |  | 
|  | <math>{{\left( ds \right)}^{2}}</math>
 |  | 
|  | als Skalarprodukt von Vierervektoren im Minkowski- Raum V und man benutze den Formalismus der '''linearen orthogonalen '''Transformation , unter denen das Skalarprodukt invariant bleibt:
 |  | 
|  |   |  | 
|  | In der ko / kontravarianten Schreibweise tritt jeder Vierervektor in 2 möglichen Versionen auf:
 |  | 
|  |   |  | 
|  | <u>'''kontravariante Komponenten:'''</u>
 |  | 
|  |   |  | 
|  | <math>\begin{align}
 |  | 
|  | & {{x}^{i}} \\
 |  | 
|  | & {{x}^{1}}:=ct \\
 |  | 
|  | & {{x}^{1}},{{x}^{2}},{{x}^{3}} \\
 |  | 
|  | \end{align}</math>
 |  | 
|  |   |  | 
|  | als Komponenten des Ortsvektors
 |  | 
|  | <math>\bar{r}</math>
 |  | 
|  | :
 |  | 
|  |   |  | 
|  | <u>'''kovariante Komponenten'''</u>
 |  | 
|  |   |  | 
|  | <math>\begin{align}
 |  | 
|  | & {{x}_{i}}: \\
 |  | 
|  | & {{x}_{0}}:=ct \\
 |  | 
|  | & {{x}_{\alpha }}=-{{x}^{\alpha }},\alpha =1,2,3 \\
 |  | 
|  | \end{align}</math>
 |  | 
|  |   |  | 
|  | kovarianter Vektor
 |  | 
|  | <math>\in \tilde{V}</math>
 |  | 
|  | , dualer Vektorraum zu V !
 |  | 
|  | Merke: Die Räume der kovarianten Vektoren ist dual zur menge der kontravarianten
 |  | 
|  | ->
 |  | 
|  | <math>\in \tilde{V}</math>
 |  | 
|  | als Raum der linearen Funktionale l:
 |  | 
|  | <math>V\to R</math>
 |  | 
|  |   |  | 
|  | Damit werden dann die Skalarprodukte gebildet !
 |  | 
|  |   |  | 
|  | Schreibe
 |  | 
|  |   |  | 
|  | <math>{{\left( ds \right)}^{2}}=d{{x}^{0}}d{{x}_{0}}+d{{x}^{1}}d{{x}_{1}}+d{{x}^{2}}d{{x}_{2}}+d{{x}^{3}}d{{x}_{3}}=d{{x}^{i}}d{{x}_{i}}</math>
 |  | 
|  |   |  | 
|  | Mit: Summenkonvention !
 |  | 
|  | über je einen ko- und einen kontravarianten Index ( hier i =0,1,2,3) wird summiert !
 |  | 
|  |   |  | 
|  | <u>'''Physikalische Anwendung'''</u>
 |  | 
|  |   |  | 
|  | Lorentz- Invarianten lassen sich als Skalarprodukt
 |  | 
|  | <math>{{a}^{i}}{{a}_{i}}</math>
 |  | 
|  | schreiben !
 |  | 
|  |   |  | 
|  | '''Beispiel: dÁlemebert- Operator:'''
 |  | 
|  |   |  | 
|  | <math>\#=\Delta -\frac{1}{{{c}^{2}}}\frac{{{\partial }^{2}}}{\partial {{t}^{2}}}=-\frac{\partial }{\partial {{x}^{i}}}\frac{\partial }{\partial {{x}_{i}}}=-{{\partial }_{i}}{{\partial }^{i}}</math>
 |  | 
|  |   |  | 
|  | <u>'''Vierergeschwindigkeit'''</u>
 |  | 
|  |   |  | 
|  | <math>\begin{align}
 |  | 
|  | & {{u}^{i}}:=\frac{d{{x}^{i}}}{ds}\Rightarrow {{u}^{i}}{{u}_{i}}=\frac{d{{x}^{i}}d{{x}_{i}}}{{{\left( ds \right)}^{2}}}=1 \\
 |  | 
|  | & mit \\
 |  | 
|  | & ds={{\left( d{{x}^{i}}d{{x}_{i}} \right)}^{\frac{1}{2}}}=c{{\left( 1-{{\beta }^{2}} \right)}^{\frac{1}{2}dt}}=\frac{c}{\gamma }dt \\
 |  | 
|  | & \Rightarrow {{u}^{0}}=\gamma  \\
 |  | 
|  | & {{u}^{\alpha }}=\frac{\gamma }{c}{{v}^{\alpha }} \\
 |  | 
|  | & {{v}^{\alpha }}:=\frac{d{{x}^{\alpha }}}{dt} \\
 |  | 
|  | & \beta :=\frac{v}{c} \\
 |  | 
|  | & \gamma :=\frac{1}{\sqrt{1-{{\beta }^{2}}}} \\
 |  | 
|  | \end{align}</math>
 |  | 
|  |   |  | 
|  | '''Physikalische Interpretation'''
 |  | 
|  |   |  | 
|  | <math>\begin{align}
 |  | 
|  | & {{u}^{\alpha }}=\frac{1}{c}\frac{d{{x}^{\alpha }}}{d\tau } \\
 |  | 
|  | & d\tau =\frac{dt}{\gamma } \\
 |  | 
|  | \end{align}</math>
 |  | 
|  |   |  | 
|  | '''Viererimpuls'''
 |  | 
|  |   |  | 
|  | <math>{{p}^{i}}:={{m}_{0}}c{{u}^{i}}</math>
 |  | 
|  | mit der Ruhemasse  m0
 |  | 
|  |   |  | 
|  | Also:
 |  | 
|  |   |  | 
|  | <math>\begin{align}
 |  | 
|  | & {{p}^{i}}{{p}_{i}}={{m}_{0}}^{2}{{c}^{2}}{{u}^{i}}{{u}_{i}} \\
 |  | 
|  | & {{u}^{i}}{{u}_{i}}=1 \\
 |  | 
|  | & \Rightarrow {{p}^{i}}{{p}_{i}}={{m}_{0}}^{2}{{c}^{2}} \\
 |  | 
|  | & {{p}^{0}}={{m}_{0}}\gamma c=m(v)c=\frac{E}{c} \\
 |  | 
|  | & {{p}^{\alpha }}={{m}_{0}}\gamma {{v}^{\alpha }}=m(v){{v}^{\alpha }} \\
 |  | 
|  | & {{p}^{i}}{{p}_{i}}={{m}_{0}}^{2}{{c}^{2}}{{u}^{i}}{{u}_{i}}\Leftrightarrow {{E}^{2}}={{m}_{0}}^{2}{{c}^{4}}+{{c}^{2}}{{{\bar{p}}}^{2}} \\
 |  | 
|  | \end{align}</math>
 |  | 
|  |   |  | 
|  | Mit der Energie
 |  | 
|  |   |  | 
|  | <math>E=m(v){{c}^{2}}</math>
 |  | 
|  |   |  | 
|  | '''Analoge Definition von Tensoren 2. Stufe:'''
 |  | 
|  |   |  | 
|  | <math>\begin{align}
 |  | 
|  | & {{A}^{ik}},{{A}^{i}}_{k},{{A}_{i}}^{k},{{A}_{ik}} \\
 |  | 
|  | & {{A}^{00}}={{A}^{0}}_{0}={{A}_{0}}^{0}={{A}_{00}} \\
 |  | 
|  | & {{A}^{10}}={{A}^{1}}_{0}=-{{A}_{1}}^{0}=-{{A}_{10}} \\
 |  | 
|  | & {{A}^{11}}=-{{A}^{1}}_{1}=-{{A}_{1}}^{1}={{A}_{11}} \\
 |  | 
|  | \end{align}</math>
 |  | 
|  |   |  | 
|  | <u>'''Der metrische Tensor'''</u>
 |  | 
|  |   |  | 
|  | <math>{{g}^{ik}}:={{\delta }^{ik}}=\left. \left\{ \begin{matrix}
 |  | 
|  | {{\delta }^{i}}_{k}\quad k=0  \\
 |  | 
|  | -{{\delta }^{i}}_{k}\quad k=1,2,3  \\
 |  | 
|  | \end{matrix} \right. \right\}={{g}_{ik}}</math>
 |  | 
|  |   |  | 
|  | <math>{{g}^{ik}}={{g}_{ik}}=\left( \begin{matrix}
 |  | 
|  | 1 & 0 & 0 & 0  \\
 |  | 
|  | 0 & -1 & 0 & 0  \\
 |  | 
|  | 0 & 0 & -1 & 0  \\
 |  | 
|  | 0 & 0 & 0 & -1  \\
 |  | 
|  | \end{matrix} \right)</math>
 |  | 
|  |   |  | 
|  | Mittels der Metrik werden Indices gehoben bzw. gesenkt:
 |  | 
|  |   |  | 
|  | <math>{{g}^{ik}}{{a}_{k}}={{a}^{i}}</math>
 |  | 
|  |   |  | 
|  | Wichtig fürs Skalarprodukt:
 |  | 
|  |   |  | 
|  | <math>d{{s}^{2}}={{g}^{ik}}d{{x}_{i}}d{{x}_{k}}={{g}_{ik}}d{{x}^{i}}d{{x}^{k}}</math>
 |  | 
|  |   |  | 
|  | <u>Lorentz- Trafo</u>
 |  | 
|  |   |  | 
|  | zwischen Bezugssystemen: Lineare / homogene Trafo
 |  | 
|  |   |  | 
|  | die Lorentz- Transformation für
 |  | 
|  |   |  | 
|  | <math>\begin{align}
 |  | 
|  | & \left( {{x}^{0}}\begin{matrix}
 |  | 
|  | , & {{x}^{1}}, & {{x}^{2}}, & {{x}^{3}}  \\
 |  | 
|  | \end{matrix} \right)=\left( \begin{matrix}
 |  | 
|  | ct, & x, & y, & z  \\
 |  | 
|  | \end{matrix} \right) \\
 |  | 
|  | & d{{s}^{2}}={{c}^{2}}d{{t}^{2}}-d{{x}^{2}}-d{{y}^{2}}-d{{z}^{2}} \\
 |  | 
|  | \end{align}</math>
 |  | 
|  |   |  | 
|  | Nämlich:
 |  | 
|  |   |  | 
|  | <math>\begin{align}
 |  | 
|  | & \left( \begin{matrix}
 |  | 
|  | {{x}_{0}}\acute{\ }  \\
 |  | 
|  | {{x}_{1}}\acute{\ }  \\
 |  | 
|  | {{x}_{2}}\acute{\ }  \\
 |  | 
|  | {{x}_{3}}\acute{\ }  \\
 |  | 
|  | \end{matrix} \right)=\left( \begin{matrix}
 |  | 
|  | \frac{1}{\sqrt{1-{{\beta }^{2}}}} & \frac{-\beta }{\sqrt{1-{{\beta }^{2}}}} & 0 & 0  \\
 |  | 
|  | \frac{-\beta }{\sqrt{1-{{\beta }^{2}}}} & \frac{1}{\sqrt{1-{{\beta }^{2}}}} & 0 & 0  \\
 |  | 
|  | 0 & 0 & 1 & 0  \\
 |  | 
|  | 0 & 0 & 0 & 1  \\
 |  | 
|  | \end{matrix} \right)\left( \begin{matrix}
 |  | 
|  | {{x}_{0}}  \\
 |  | 
|  | {{x}_{1}}  \\
 |  | 
|  | {{x}_{2}}  \\
 |  | 
|  | {{x}_{3}}  \\
 |  | 
|  | \end{matrix} \right) \\
 |  | 
|  | & x{{\acute{\ }}^{i}}={{U}^{i}}_{k}{{x}^{k}} \\
 |  | 
|  | \end{align}</math>
 |  | 
|  |   |  | 
|  | Mit
 |  | 
|  | <math>{{U}^{i}}_{k}=\left( \begin{matrix}
 |  | 
|  | \frac{1}{\sqrt{1-{{\beta }^{2}}}} & \frac{-\beta }{\sqrt{1-{{\beta }^{2}}}} & 0 & 0  \\
 |  | 
|  | \frac{-\beta }{\sqrt{1-{{\beta }^{2}}}} & \frac{1}{\sqrt{1-{{\beta }^{2}}}} & 0 & 0  \\
 |  | 
|  | 0 & 0 & 1 & 0  \\
 |  | 
|  | 0 & 0 & 0 & 1  \\
 |  | 
|  | \end{matrix} \right)</math>
 |  | 
|  |   |  | 
|  | für
 |  | 
|  | <math>v||{{x}_{1}}</math>
 |  | 
|  |   |  | 
|  | Wesentliche Eigenschaft ( die Viererschreibweise ist so konstruiert worden):
 |  | 
|  |   |  | 
|  | U ist orthogonale Trafo:
 |  | 
|  |   |  | 
|  | <math>\begin{align}
 |  | 
|  | & {{U}^{i}}_{k}{{U}_{i}}^{l}=\delta _{k}^{l} \\
 |  | 
|  | & \Rightarrow a{{\acute{\ }}^{i}}b{{\acute{\ }}_{i}}={{U}^{i}}_{k}{{U}_{i}}^{l}{{a}^{k}}{{b}_{l}}={{a}^{k}}{{b}_{k}} \\
 |  | 
|  | \end{align}</math>
 |  | 
|  |   |  | 
|  | Das Skalarprodukt ist invariant, falls U eine orthogonale Trafo ist
 |  | 
|  | Bzw.
 |  | 
|  | Forderung: Skalarprodukt invariant -> U muss orthogonale Trafo sein !
 |  | 
|  |   |  | 
|  | Umkehr- Transformation:
 |  | 
|  |   |  | 
|  | <math>{{x}^{i}}={{U}_{k}}^{i}x{{\acute{\ }}^{k}}</math>
 |  | 
|  |   |  | 
|  | <noinclude>{{Scripthinweis|Elektrodynamik|6|0}}</noinclude>
 |  | 
|  |   |  | 
|  | =Inhomogene Maxwellgleichungen im Vakuum=
 |  | 
|  |  ( Erregungsgleichungen)
 |  | 
|  |   |  | 
|  | <math>\begin{align}
 |  | 
|  | & {{\varepsilon }_{0}}\nabla \cdot \bar{E}=\rho  \\
 |  | 
|  | & \Leftrightarrow {{\partial }_{1}}{{E}^{1}}+{{\partial }_{2}}{{E}^{2}}+{{\partial }_{3}}{{E}^{3}}=\frac{1}{{{\varepsilon }_{0}}c}c\rho  \\
 |  | 
|  | & \Leftrightarrow {{\partial }_{1}}{{F}^{10}}+{{\partial }_{2}}{{F}^{20}}+{{\partial }_{3}}{{F}^{30}}=\frac{1}{{{\varepsilon }_{0}}c}{{j}^{0}} \\
 |  | 
|  | & \Leftrightarrow {{\partial }_{\nu }}{{F}^{\nu 0}}=\frac{1}{{{\varepsilon }_{0}}c}{{j}^{0}} \\
 |  | 
|  | & wegen{{\partial }_{0}}{{F}^{00}}=0 \\
 |  | 
|  | & auch{{\partial }_{i}}{{F}^{i0}}=\frac{1}{{{\varepsilon }_{0}}c}{{j}^{0}} \\
 |  | 
|  | \end{align}</math>
 |  | 
|  |   |  | 
|  | #
 |  | 
|  | # <math>\nabla \times \bar{B}-\frac{1}{{{c}^{2}}}\frac{\partial }{\partial t}\bar{E}={{\mu }_{0}}\left( \nabla \times \bar{H}-{{\varepsilon }_{0}}\frac{\partial }{\partial t}\bar{E} \right)={{\mu }_{0}}\bar{j}</math>
 |  | 
|  | #
 |  | 
|  |   |  | 
|  | # Komponente
 |  | 
|  |   |  | 
|  | <math>\begin{align}
 |  | 
|  | & {{\partial }_{2}}{{B}^{3}}-{{\partial }_{3}}{{B}^{2}}={{\mu }_{0}}{{j}^{1}}+{{\varepsilon }_{0}}{{\mu }_{0}}\frac{\partial }{\partial t}{{E}^{1}} \\
 |  | 
|  | & {{\mu }_{0}}c=\frac{1}{{{\varepsilon }_{0}}c} \\
 |  | 
|  | & \Leftrightarrow {{\partial }_{2}}{{F}^{21}}-.{{\partial }_{3}}{{F}^{13}}=\frac{1}{{{\varepsilon }_{0}}c}{{j}^{1}}+.{{\partial }_{0}}{{F}^{10}} \\
 |  | 
|  | & {{\partial }_{2}}{{F}^{21}}+{{\partial }_{3}}{{F}^{31}}+{{\partial }_{0}}{{F}^{01}}=\frac{1}{{{\varepsilon }_{0}}c}{{j}^{1}} \\
 |  | 
|  | & \Leftrightarrow {{\partial }_{\nu }}{{F}^{\nu 1}}=\frac{1}{{{\varepsilon }_{0}}c}{{j}^{1}} \\
 |  | 
|  | & wegen{{\partial }_{1}}{{F}^{11}}=0 \\
 |  | 
|  | \end{align}</math>
 |  | 
|  |   |  | 
|  | Dies kann analog für die zweite und dritte Komponente durchgeixt werden. Aus der Nullten Komponente hatten wir die Nullte des Stroms ( Erregungsgleichung des elektrischen Feldes), so dass insgesamt folgt:
 |  | 
|  |   |  | 
|  | <math>\begin{align}
 |  | 
|  | & {{\partial }_{\nu }}{{F}^{\mu \nu }}=-\frac{1}{{{\varepsilon }_{0}}c}{{j}^{\mu }} \\
 |  | 
|  | & {{\partial }_{\nu }}{{F}^{\nu \mu }}=\frac{1}{{{\varepsilon }_{0}}c}{{j}^{\mu }} \\
 |  | 
|  | \end{align}</math>
 |  | 
|  |   |  | 
|  | Die Viererdivergenz des elektrischen Feldstärketensors !
 |  | 
|  |   |  | 
|  | '''Bemerkungen'''
 |  | 
|  |   |  | 
|  | # die homogenen Maxwellgleichungen sind durch den Potenzialansatz
 |  | 
|  |   |  | 
|  | <math>\left\{ {{F}_{\mu \nu }} \right\}=\left\{ {{\partial }_{\mu }}{{\Phi }_{\nu }}-{{\partial }_{\nu }}{{\Phi }_{\mu }} \right\}=\left( \begin{matrix}
 |  | 
|  | 0 & \frac{1}{c}{{E}_{x}} & \frac{1}{c}{{E}_{y}} & \frac{1}{c}{{E}_{z}}  \\
 |  | 
|  | -\frac{1}{c}{{E}_{x}} & 0 & -{{B}_{z}} & {{B}_{y}}  \\
 |  | 
|  | -\frac{1}{c}{{E}_{y}} & {{B}_{z}} & 0 & -{{B}_{x}}  \\
 |  | 
|  | -\frac{1}{c}{{E}_{z}} & -{{B}_{y}} & {{B}_{x}} & 0  \\
 |  | 
|  | \end{matrix} \right)</math>
 |  | 
|  |   |  | 
|  | automatisch erfüllt:
 |  | 
|  |   |  | 
|  | <math>\begin{align}
 |  | 
|  | & {{\varepsilon }^{\alpha \beta \mu \nu }}{{\partial }_{\beta }}{{F}_{\mu \nu }}={{\varepsilon }^{\alpha \beta \mu \nu }}{{\partial }_{\beta }}{{\partial }_{\mu }}{{\Phi }_{\nu }}-{{\varepsilon }^{\alpha \beta \mu \nu }}{{\partial }_{\beta }}{{\partial }_{\nu }}{{\Phi }_{\mu }} \\
 |  | 
|  | & {{\varepsilon }^{\alpha \beta \mu \nu }}{{\partial }_{\beta }}{{\partial }_{\mu }}{{\Phi }_{\nu }}=0, \\
 |  | 
|  | & da:{{\partial }_{\beta }}{{\partial }_{\mu }}{{\Phi }_{\nu }}\quad symmetrisch \\
 |  | 
|  | & {{\varepsilon }^{\alpha \beta \mu \nu }}\quad antisymmetrisch \\
 |  | 
|  | & {{\varepsilon }^{\alpha \beta \mu \nu }}{{\partial }_{\beta }}{{\partial }_{\nu }}{{\Phi }_{\mu }}=0 \\
 |  | 
|  | \end{align}</math>
 |  | 
|  |   |  | 
|  | Aus den inhomogenen Maxwell- Gleichungen
 |  | 
|  |   |  | 
|  | <math>{{\partial }_{\beta }}{{F}^{\beta \nu }}={{\partial }_{\beta }}{{\partial }^{\beta }}{{\Phi }^{\nu }}-{{\partial }_{\beta }}{{\partial }^{\nu }}{{\Phi }^{\beta }}=\frac{1}{{{\varepsilon }_{0}}c}{{j}^{\nu }}</math>
 |  | 
|  |   |  | 
|  | folgt mit Lorentz- Eichung
 |  | 
|  |   |  | 
|  | <math>{{\partial }_{\mu }}{{\Phi }^{\mu }}=0</math>
 |  | 
|  |   |  | 
|  | <math>\begin{align}
 |  | 
|  | & {{\partial }_{\beta }}{{\partial }^{\nu }}{{\Phi }^{\beta }}={{\partial }^{\nu }}{{\partial }_{\beta }}{{\Phi }^{\beta }}=0 \\
 |  | 
|  | & also: \\
 |  | 
|  | \end{align}</math>
 |  | 
|  |   |  | 
|  | <math>{{\partial }_{\beta }}{{F}^{\beta \nu }}={{\partial }_{\beta }}{{\partial }^{\beta }}{{\Phi }^{\nu }}=\frac{1}{{{\varepsilon }_{0}}c}{{j}^{\nu }}</math>
 |  | 
|  | als inhomogene Wellengleichung
 |  | 
|  |   |  | 
|  | '''Die Maxwellgleichungen'''
 |  | 
|  |   |  | 
|  | <math>\begin{align}
 |  | 
|  | & {{\varepsilon }^{\alpha \beta \mu \nu }}{{\partial }_{\beta }}{{F}_{\mu \nu }}={{\varepsilon }^{\alpha \beta \mu \nu }}{{\partial }_{\beta }}{{\partial }_{\mu }}{{\Phi }_{\nu }}-{{\varepsilon }^{\alpha \beta \mu \nu }}{{\partial }_{\beta }}{{\partial }_{\nu }}{{\Phi }_{\mu }}=0 \\
 |  | 
|  | & {{\partial }_{\beta }}{{F}^{\beta \nu }}={{\partial }_{\beta }}{{\partial }^{\beta }}{{\Phi }^{\nu }}=\frac{1}{{{\varepsilon }_{0}}c}{{j}^{\nu }} \\
 |  | 
|  | \end{align}</math>
 |  | 
|  |   |  | 
|  | sind ihrerseits nun Lorentz- kovariant, da sie durch 4 Pseudovektoren ausgedrückt sind.
 |  | 
|  | Merke: Pseudo - 4- Vektor stört nicht, da rechte Seite gleich Null !!
 |  | 
|  |   |  | 
|  | <u>'''Gauß- System:'''</u>
 |  | 
|  |   |  | 
|  | <math>{{\partial }_{\beta }}{{F}^{\beta \nu }}=\frac{4\pi }{c}{{j}^{\nu }}</math>
 |  | 
|  |   |  | 
|  | =Relativistisches Hamiltonprinzip=
 |  | 
|  |   |  | 
|  | <u>'''Ziel: '''</u>Formulierung der Elektrodynamik als Lagrange- Feldtheorie
 |  | 
|  |   |  | 
|  | Die rel. Dynamik eines Massepunktes kann aus dem Extremalprinzip abgeleitet werden, wenn man Die Punkt 1 und 2 als Anfangs- und Endereignis im 4- Raum sieht  und wenn man die Ränder bei Variation festhält:
 |  | 
|  |   |  | 
|  | <math>\begin{align}
 |  | 
|  | & \delta W=0 \\
 |  | 
|  | & W=\int_{1}^{2}{{}}ds \\
 |  | 
|  | \end{align}</math>
 |  | 
|  |   |  | 
|  | letzteres: Wirkungsintegral
 |  | 
|  | Wichtig:
 |  | 
|  | <math>{{\left. \delta {{x}^{i}} \right|}_{1,2}}=0</math>
 |  | 
|  |   |  | 
|  | Newtonsche Mechanik ist Grenzfall:
 |  | 
|  |   |  | 
|  | <math>W=-{{m}_{0}}c\int_{1}^{2}{{}}ds</math>
 |  | 
|  |   |  | 
|  | Wechselwirkung eines Massepunktes mit einem 4- Vektor- Feld
 |  | 
|  |   |  | 
|  | <math>\begin{align}
 |  | 
|  | & \left( {{\phi }^{i}} \right)({{x}^{j}}) \\
 |  | 
|  | & \Rightarrow  \\
 |  | 
|  | \end{align}</math>
 |  | 
|  |   |  | 
|  | <math>W=\int_{1}^{2}{{}}\left\{ -{{m}_{0}}cds-{{\phi }^{i}}d{{x}_{i}} \right\}</math>
 |  | 
|  |   |  | 
|  | mit den Lorentz- Invarianten
 |  | 
|  |   |  | 
|  | <math>{{m}_{0}}cds</math>
 |  | 
|  |   |  | 
|  | und
 |  | 
|  |   |  | 
|  | <math>{{\phi }^{i}}d{{x}_{i}}</math>
 |  | 
|  |   |  | 
|  | '''Variation:'''
 |  | 
|  |   |  | 
|  | <math>\delta W=\int_{1}^{2}{{}}\left\{ -{{m}_{0}}c\delta \left( ds \right)-\delta \left( {{\phi }^{\mu }}d{{x}_{\mu }} \right) \right\}</math>
 |  | 
|  |   |  | 
|  | Nun:
 |  | 
|  |   |  | 
|  | <math>\begin{align}
 |  | 
|  | & \delta \left( ds \right)=\delta {{\left( d{{x}^{\mu }}d{{x}_{\mu }} \right)}^{\frac{1}{2}}}=\frac{1}{2}\frac{\left( d\delta {{x}^{\mu }} \right)d{{x}_{\mu }}+d{{x}^{\mu }}\left( d\delta {{x}_{\mu }} \right)}{ds} \\
 |  | 
|  | & \left( d\delta {{x}^{\mu }} \right)d{{x}_{\mu }}=d{{x}^{\mu }}\left( d\delta {{x}_{\mu }} \right) \\
 |  | 
|  | & =\frac{d{{x}^{\mu }}}{ds}\left( d\delta {{x}_{\mu }} \right)={{u}^{\mu }}\left( d\delta {{x}_{\mu }} \right) \\
 |  | 
|  | \end{align}</math>
 |  | 
|  |   |  | 
|  | Außerdem:
 |  | 
|  |   |  | 
|  | <math>\delta \left( {{\phi }^{\mu }}d{{x}_{\mu }} \right)=\delta {{\phi }^{\mu }}d{{x}_{\mu }}+{{\phi }^{\mu }}d\left( \delta {{x}_{\mu }} \right)</math>
 |  | 
|  |   |  | 
|  | Somit:
 |  | 
|  |   |  | 
|  | <math>\delta W=\int_{1}^{2}{{}}\left\{ -{{m}_{0}}c{{u}^{\mu }}\left( d\delta {{x}_{\mu }} \right)-\delta {{\phi }^{\mu }}d{{x}_{\mu }}-{{\phi }^{\mu }}d\left( \delta {{x}_{\mu }} \right) \right\}</math>
 |  | 
|  |   |  | 
|  | Weiter mit partieller Integration:
 |  | 
|  |   |  | 
|  | <math>\begin{align}
 |  | 
|  | & \int_{1}^{2}{{}}-{{m}_{0}}c{{u}^{\mu }}d\left( \delta {{x}_{\mu }} \right)=\left[ -{{m}_{0}}c{{u}^{\mu }}\left( \delta {{x}_{\mu }} \right) \right]_{1}^{2}+\int_{1}^{2}{{}}{{m}_{0}}cd{{u}^{\mu }}\left( \delta {{x}_{\mu }} \right) \\
 |  | 
|  | & \left[ -{{m}_{0}}c{{u}^{\mu }}\left( \delta {{x}_{\mu }} \right) \right]_{1}^{2}=0,weil\delta {{x}_{\mu }}_{1}^{2}=0 \\
 |  | 
|  | & \Rightarrow \int_{1}^{2}{{}}-{{m}_{0}}c{{u}^{\mu }}d\left( \delta {{x}_{\mu }} \right)=\int_{1}^{2}{{}}{{m}_{0}}cd{{u}^{\mu }}\left( \delta {{x}_{\mu }} \right)=\int_{1}^{2}{{}}{{m}_{0}}c\frac{d{{u}^{\mu }}}{ds}\left( \delta {{x}_{\mu }} \right)ds \\
 |  | 
|  | \end{align}</math>
 |  | 
|  |   |  | 
|  | Weiter:
 |  | 
|  |   |  | 
|  | <math>\int_{1}^{2}{{}}-{{\phi }^{\mu }}d\left( \delta {{x}_{\mu }} \right)=-\left[ {{\phi }^{\mu }}\delta {{x}_{\mu }} \right]_{1}^{2}+\int_{1}^{2}{{}}d{{\phi }^{\mu }}\left( \delta {{x}_{\mu }} \right)</math>
 |  | 
|  |   |  | 
|  | Mit
 |  | 
|  |   |  | 
|  | <math>\begin{align}
 |  | 
|  | & d{{\phi }^{\mu }}={{\partial }^{\nu }}{{\phi }^{\mu }}d{{x}_{\nu }}={{\partial }^{\nu }}{{\phi }^{\mu }}{{u}_{\nu }}ds \\
 |  | 
|  | & \delta {{\phi }^{\mu }}={{\partial }^{\nu }}{{\phi }^{\mu }}\delta {{x}_{\nu }} \\
 |  | 
|  | & \delta {{\phi }^{\mu }}d{{x}_{\mu }}={{\partial }^{\nu }}{{\phi }^{\mu }}\delta {{x}_{\nu }}d{{x}_{\mu }}=i<->k={{\partial }^{\mu }}{{\phi }^{\nu }}\delta {{x}_{\mu }}d{{x}_{\nu }}={{\partial }^{\mu }}{{\phi }^{\nu }}{{u}_{\nu }}\delta {{x}_{\mu }}ds \\
 |  | 
|  | \end{align}</math>
 |  | 
|  |   |  | 
|  | Einsetzen in
 |  | 
|  |   |  | 
|  | <math>\delta W=\int_{1}^{2}{{}}\left\{ -{{m}_{0}}c{{u}^{\mu }}\left( d\delta {{x}_{\mu }} \right)-\delta {{\phi }^{\mu }}d{{x}_{\mu }}-{{\phi }^{\mu }}d\left( \delta {{x}_{\mu }} \right) \right\}</math>
 |  | 
|  |   |  | 
|  | liefert:
 |  | 
|  |   |  | 
|  | <math>\delta W=\int_{1}^{2}{{}}\left\{ {{m}_{0}}c\frac{d{{u}^{\mu }}}{ds}-\left( {{\partial }^{\mu }}{{\phi }^{\nu }}-{{\partial }^{\nu }}{{\phi }^{\mu }} \right){{u}_{\nu }} \right\}\delta {{x}_{\mu }}</math>
 |  | 
|  |   |  | 
|  | '''Wegen'''
 |  | 
|  |   |  | 
|  | <math>\begin{align}
 |  | 
|  | & \delta W=\int_{1}^{2}{{}}\left\{ {{m}_{0}}c\frac{d{{u}^{\mu }}}{ds}-\left( {{\partial }^{\mu }}{{\phi }^{\nu }}-{{\partial }^{\nu }}{{\phi }^{\mu }} \right){{u}_{\nu }} \right\}\delta {{x}_{\mu }}=0 \\
 |  | 
|  | & {{m}_{0}}c\frac{d{{u}^{\mu }}}{ds}=\left( {{\partial }^{\mu }}{{\phi }^{\nu }}-{{\partial }^{\nu }}{{\phi }^{\mu }} \right){{u}_{\nu }}:={{f}^{\mu \nu }}{{u}_{\nu }} \\
 |  | 
|  | & {{f}^{\mu \nu }}=\left( {{\partial }^{\mu }}{{\phi }^{\nu }}-{{\partial }^{\nu }}{{\phi }^{\mu }} \right) \\
 |  | 
|  | \end{align}</math>
 |  | 
|  |   |  | 
|  | Dies ist dann die aus dem hamiltonschen Prinzip abgeleitete Bewegungsgleichung eines Massepunktes der Ruhemasse m0 und der Ladung q unter dem Einfluss der Lorentz- Kraft.
 |  | 
|  |   |  | 
|  | Man setze:
 |  | 
|  |   |  | 
|  | <math>\begin{align}
 |  | 
|  | & {{p}^{\mu }}={{m}_{0}}c{{u}^{\mu }} \\
 |  | 
|  | & {{f}^{\mu \nu }}=\frac{q}{c}{{F}^{\mu \nu }}=\left( {{\partial }^{\mu }}{{\phi }^{\nu }}-{{\partial }^{\nu }}{{\phi }^{\mu }} \right) \\
 |  | 
|  | & {{\phi }^{\mu }}=\frac{q}{c}{{\Phi }^{\mu }} \\
 |  | 
|  | & \frac{d}{ds}{{p}^{\mu }}=\frac{q}{c}{{F}^{\mu \nu }}{{u}_{\nu }}\Leftrightarrow \delta W=\delta \int_{1}^{2}{{}}\left\{ -{{m}_{0}}cds-\frac{q}{c}{{\Phi }^{\mu }}d{{x}_{\mu }} \right\}=0 \\
 |  | 
|  | \end{align}</math>
 |  | 
|  |   |  | 
|  | Man bestimmt die Ortskomponenten
 |  | 
|  | <math>\alpha =1,2,3</math>
 |  | 
|  | über
 |  | 
|  |   |  | 
|  | <math>\begin{align}
 |  | 
|  | & \frac{d}{dt}\bar{p}=q\left( \bar{E}+\bar{v}\times \bar{B} \right) \\
 |  | 
|  | &  \\
 |  | 
|  | \end{align}</math>
 |  | 
|  |   |  | 
|  | überein, denn mit
 |  | 
|  |   |  | 
|  | <math>\begin{align}
 |  | 
|  | & {{u}^{0}}=\gamma  \\
 |  | 
|  | & {{u}^{\alpha }}=\frac{\gamma }{c}{{v}^{\alpha }}=-{{u}_{\alpha }} \\
 |  | 
|  | \end{align}</math>
 |  | 
|  |   |  | 
|  | folgt dann:
 |  | 
|  |   |  | 
|  | <math>\begin{align}
 |  | 
|  | & \frac{d}{dt}{{p}^{1}}=q\left( {{E}^{1}}+{{v}^{2}}{{B}^{3}}-{{v}^{3}}{{B}^{2}} \right) \\
 |  | 
|  | & =q\left( {{F}^{10}}+{{F}^{21}}\frac{1}{c}{{v}^{2}}-{{F}^{13}}\frac{1}{c}{{v}^{3}} \right) \\
 |  | 
|  | & =\frac{q}{\gamma }\left( {{F}^{10}}\gamma +{{F}^{21}}\frac{\gamma }{c}{{v}^{2}}-{{F}^{13}}\frac{\gamma }{c}{{v}^{3}} \right)=\frac{q}{\gamma }{{F}^{1\mu }}{{u}_{\mu }} \\
 |  | 
|  | \end{align}</math>
 |  | 
|  |   |  | 
|  | mit
 |  | 
|  |   |  | 
|  | <math>ds=\frac{c}{\gamma }dt</math>
 |  | 
|  | :
 |  | 
|  |   |  | 
|  | <math>\frac{d}{ds}{{p}^{1}}=\frac{q}{c}{{F}^{1\mu }}{{u}_{\mu }}</math>
 |  | 
|  |   |  | 
|  | Die zeitartige Komponente
 |  | 
|  | <math>\mu =0</math>
 |  | 
|  | gibt wegen
 |  | 
|  | <math>{{p}^{0}}=\frac{E}{c}</math>
 |  | 
|  | :
 |  | 
|  |   |  | 
|  | <math>\begin{align}
 |  | 
|  | & \frac{d}{ds}\frac{E}{c}=\frac{\gamma }{{{c}^{2}}}\frac{dE}{dt}=\frac{q}{c}\left( {{F}^{01}}{{u}_{1}}+{{F}^{02}}{{u}_{2}}+{{F}^{03}}{{u}_{3}} \right)= \\
 |  | 
|  | & =\frac{q\gamma }{{{c}^{2}}}\left( -{{E}^{1}}{{v}_{1}}-{{E}^{2}}{{v}_{2}}-{{E}^{3}}{{v}_{3}} \right)=\frac{q\gamma }{{{c}^{2}}}\left( {{E}^{1}}{{v}^{1}}+{{E}^{2}}{{v}^{2}}+{{E}^{3}}{{v}^{3}} \right) \\
 |  | 
|  | & \frac{dE}{dt}=q\bar{E}\cdot \bar{v} \\
 |  | 
|  | \end{align}</math>
 |  | 
|  |   |  | 
|  | Dies ist die Leistungsbilanz: Die Änderung der inneren Energie ist gleich der reingesteckten Arbeit
 |  | 
|  |   |  | 
|  | =Eichinvarianz und Ladungserhaltung=
 |  | 
|  |   |  | 
|  | Wirkungsintegral:
 |  | 
|  |   |  | 
|  | <math>W=-{{m}_{0}}c\int_{1}^{2}{{}}ds-\frac{q}{c}\int_{1}^{2}{{}}d{{x}_{\mu }}{{\Phi }^{\mu }}</math>
 |  | 
|  |   |  | 
|  | Dabei:
 |  | 
|  |   |  | 
|  | <math>{{m}_{0}}c\int_{1}^{2}{{}}ds={{W}_{t}}</math>
 |  | 
|  | ( Teilchen)
 |  | 
|  |   |  | 
|  | <math>-\frac{q}{c}\int_{1}^{2}{{}}d{{x}_{\mu }}{{\Phi }^{\mu }}={{W}_{tf}}</math>
 |  | 
|  | ( Teilchen- Feld- Wechselwirkung)
 |  | 
|  |   |  | 
|  | Verallgemeinerung auf kontinuierliche Massendichte
 |  | 
|  | <math>m\left( {{x}^{\mu }} \right)</math>
 |  | 
|  | :
 |  | 
|  | Vorsicht: m ist hier Massendichte !!!
 |  | 
|  |   |  | 
|  | <math>\begin{align}
 |  | 
|  | & {{W}_{t}}=-c\int_{{}}^{{}}{{}}{{d}^{3}}rm\int_{1}^{2}{{}}ds=-\int_{\Omega }^{{}}{{}}d\Omega m\frac{ds}{dt} \\
 |  | 
|  | & d\Omega :={{d}^{3}}rcdt=d{{x}^{0}}d{{x}^{1}}d{{x}^{2}}d{{x}^{3}} \\
 |  | 
|  | \end{align}</math>
 |  | 
|  |   |  | 
|  | dOmega als Volumenelement  im Minkowski- Raum !!!
 |  | 
|  |   |  | 
|  | Bemerkungen:
 |  | 
|  | #
 |  | 
|  | # <math>d\Omega </math>
 |  | 
|  | # ist eine Lorentz- Invariante , da das Volumen unter orthogonalen Transformationen
 |  | 
|  |   |  | 
|  | <math>{{U}^{\mu }}_{\nu }</math>
 |  | 
|  | erhalten bleibt.
 |  | 
|  |   |  | 
|  | 2) Aus
 |  | 
|  | <math>d{{m}_{0}}d{{x}^{\mu }}=\frac{\mu }{c}\frac{d{{x}^{\mu }}}{dt}{{d}^{3}}rcdt;{{d}^{3}}rcdt=d\Omega \Rightarrow d{{m}_{0}}d{{x}^{\mu }}=\frac{\mu }{c}\frac{d{{x}^{\mu }}}{dt}d\Omega </math>
 |  | 
|  |   |  | 
|  | folgt, dass die Vierer- Massenstromdichte mit Massendichte m=
 |  | 
|  | <math>d{{m}_{0}}d{{x}^{\mu }}=\frac{\mu }{c}\frac{d{{x}^{\mu }}}{dt}{{d}^{3}}rcdt;{{d}^{3}}rcdt=d\Omega \Rightarrow d{{m}_{0}}d{{x}^{\mu }}=\frac{\mu }{c}\frac{d{{x}^{\mu }}}{dt}d\Omega </math>
 |  | 
|  | :
 |  | 
|  |   |  | 
|  | <math>{{m}_{0}}\frac{d{{x}^{\mu }}}{dt}\equiv {{g}^{\mu }}</math>
 |  | 
|  |   |  | 
|  | ein Vier- Vektor ist, da
 |  | 
|  | <math>d{{m}_{0}},d\Omega </math>
 |  | 
|  | Lorentz- Skalare sind und natürlich
 |  | 
|  | <math>d{{x}^{\mu }}</math>
 |  | 
|  | selbst auch ein Vierervektor
 |  | 
|  |   |  | 
|  | #
 |  | 
|  | # <math>{{\mu }^{2}}\frac{d{{x}^{\mu }}d{{x}_{\mu }}}{{{\left( dt \right)}^{2}}}={{g}^{\mu }}{{g}_{\mu }}={{\left( \mu \frac{ds}{dt} \right)}^{2}}</math>
 |  | 
|  | # ist Lorentz - Invariant.
 |  | 
|  |   |  | 
|  | Also
 |  | 
|  | <math>{{g}^{\mu }}{{g}_{\mu }}</math>
 |  | 
|  | ist Lorentz- Invariant. Also auch
 |  | 
|  | <math>\left( \mu \frac{ds}{dt} \right)</math>
 |  | 
|  | .
 |  | 
|  |   |  | 
|  | Somit ist
 |  | 
|  | <math>{{W}_{t}}</math>
 |  | 
|  | insgesamt Lorentz- Invariant !
 |  |