Der Hamiltonsche kanonische Formalismus: Difference between revisions

From testwiki
Jump to navigation Jump to search
*>SchuBot
m →‎Motivation: Interpunktion, replaced: ( → (
Änderung 1297 von SchuBot (Diskussion) rückgängig gemacht.
Line 1: Line 1:
====Motivation====
That's way the bestest anwesr so far!
 
Die Lagrange- Theorie benutzt als dynamische Variablen die verallgemeinerten Koordinaten qk und deren Geschwindigkeiten:
 
 
:<math>\begin{align}
  & L({{q}_{1}},...,{{q}_{f}},{{{\dot{q}}}_{1}},...,{{{\dot{q}}}_{f}},t) \\
& \Rightarrow \frac{d}{dt}\frac{\partial L}{\partial {{{\dot{q}}}_{k}}}-\frac{\partial L}{\partial {{q}_{k}}}=0 \\
\end{align}</math>
k=1,..,f
 
Wir erhalten f DGL 2. Ordnung für qk(t) im Lagrangeformalismus
 
Bei gewissen Problemstellungen, wenn es beispielsweise zyklische Variablen gibt:
 
 
:<math>\frac{\partial L}{\partial {{q}_{k}}}=0\Rightarrow \frac{\partial L}{\partial {{{\dot{q}}}_{k}}}=const</math>
 
 
oder auch bei bestimmten Erweiterungen der Theorie (Quantenmechanik, statistische Mechanik)
 
ist es vorteilhaft, statt qk und deren Geschwindigkeiten qk und die zu qk konjugierten Impulse zu benutzen.
 
Die zu den verallgemeinerten Koordinaten konjugierten Impulse lauten:
 
 
:<math>{{p}_{k}}:=\frac{\partial L}{\partial {{{\dot{q}}}_{k}}}</math>
 
 
Die erforderliche Variablentransformation
 
 
:<math>\left( {{q}_{k}},{{{\dot{q}}}_{k}},t \right)\to \left( {{q}_{k}},{{p}_{k}},t \right)</math>
 
 
leistet die sogenannte Legendre- Transformation.
 
Im Hamiltonformalismus ergeben sich nun 2f DGL 1. Ordnung für
 
qk(t)  und pk(t)
 
<noinclude>{{Scripthinweis|Mechanik|4|0}}</noinclude>

Revision as of 11:15, 1 July 2011

That's way the bestest anwesr so far!