Bilder: Difference between revisions
		
		
		
		Jump to navigation
		Jump to search
		
| Line 63: | Line 63: | ||
<math>\left\langle {{{\hat{A}}}_{S}} \right\rangle ={}_{t}{{\left\langle \underbrace{\psi |{{{\hat{U}}}_{0}}}_{\left\langle  {{\psi }_{W}} \right|}\underbrace{\hat{U}_{0}^{+}{{{\hat{A}}}_{S}}\hat{U}_{0}^{+}}_{{{{\hat{A}}}_{W}}}{{{\hat{U}}}_{0}}|\psi  \right\rangle }_{t}}={}_{W}{{\left\  | |||
<math>\begin{align}  | |||
  & \left\langle {{{\hat{A}}}_{S}} \right\rangle ={}_{t}{{\left\langle \underbrace{\psi |{{{\hat{U}}}_{0}}}_{\left\langle  {{\psi }_{W}} \right|}\underbrace{\hat{U}_{0}^{+}{{{\hat{A}}}_{S}}{{{\hat{U}}}_{0}}}_{{{{\hat{A}}}_{W}}}\hat{U}_{0}^{+}|\psi  \right\rangle }_{t}}={}_{W}{{\left\langle \psi \left| {{{\hat{A}}}_{W}} \right|\psi  \right\rangle }_{W}} \\   | |||
 & {{d}_{t}}{{\left| \psi  \right\rangle }_{W}}=\frac{i}{\hbar }{{{\hat{H}}}_{0,S}}\hat{U}_{0}^{+}{{\left| \psi  \right\rangle }_{t}}+\hat{U}_{0}^{+}{{\partial }_{t}}{{\left| \psi  \right\rangle }_{t}} \\   | |||
 & {{\partial }_{t}}{{\left| \psi  \right\rangle }_{t}}=\frac{1}{i\hbar }{{{\hat{H}}}_{0,S}}{{\left| \psi  \right\rangle }_{t}}=\frac{1}{i\hbar }{{{\hat{H}}}_{0,S}}{{{\hat{U}}}_{0}}{{\left| \psi  \right\rangle }_{W}} \\   | |||
 & \Rightarrow {{d}_{t}}{{\left| \psi  \right\rangle }_{W}}=\frac{1}{\hbar i}\left( -{{{\hat{H}}}_{0,S}}+\underbrace{\hat{U}_{0}^{+}{{{\hat{H}}}_{0,S}}{{{\hat{U}}}_{0}}}_{{{{\hat{H}}}_{W}}={{H}_{0,S}}+{{H}_{1,S}}} \right){{\left| \psi  \right\rangle }_{W}}=\frac{1}{i\hbar }\left( {{{\hat{H}}}_{W}} \right){{\left| \psi  \right\rangle }_{W}} \\   | |||
 & \Rightarrow i\hbar {{d}_{t}}{{\left| \psi  \right\rangle }_{W}}={{{\hat{H}}}_{W}}{{\left| \psi  \right\rangle }_{W}} \\   | |||
\end{align}</math>  | |||
Revision as of 19:15, 19 July 2009
Bilder in der QM
Schrödinger-Bild
Eigenvektoren und Operatoren sind nicht zeitabhängig
zeitentwicklung mit Zeitentwicklungsoperator :
definiert eine symmetrische quadratische From
geometrisch
Zustandsvektor wird um feste Hauptachsen mit Zeitentwicklungsooerator gedreht.
Schrödinger Gleichung
Heisenberg-Bild
Operatoren und Eigenvektoren zeitabhängig.
transfomration von Operatoren ins Heisenbergbild
Hamilton Operator
folgt aus Bewegungsgleichung
Wechselwirkungsbild
ist als Störung zu interpretieren