Nakajima-Zwanzig-Gleichung: Difference between revisions
Line 3: | Line 3: | ||
==Herleitung== | ==Herleitung== | ||
Beginnend mit der {{FB|Liouville von Neumann Gleichung }} | Beginnend mit der {{FB|Liouville von Neumann Gleichung }} | ||
:<math> | :<math>{d}_{t} \chi = L \chi </math> | ||
wobei der {{FB|Dichteoperator}} durch den {{FB|Projektionsoperator}} | wobei der {{FB|Dichteoperator}} durch den {{FB|Projektionsoperator}} | ||
<math>\mathcal{P}</math> | <math>\mathcal{P}</math> |
Revision as of 15:10, 9 December 2010
Die Nakajima-Zwangzig Gleichung{{#set:Fachbegriff=Nakajima-Zwangzig Gleichung|Index=Nakajima-Zwangzig Gleichung}} ist eine Integrodifferentialgleichung{{#set:Fachbegriff=Integrodifferentialgleichung|Index=Integrodifferentialgleichung}} die die Zeitentwicklung des relevanten Anteils eine quantenmechanischen Systems beschreibt. Sie wird im Dichteopertorformalismus formuliert und kann als Verallgemeinerung der Mastergleichung{{#set:Fachbegriff=Mastergleichung|Index=Mastergleichung}} angesehen werden.
Herleitung
Beginnend mit der Liouville von Neumann Gleichung {{#set:Fachbegriff=Liouville von Neumann Gleichung |Index=Liouville von Neumann Gleichung }}
wobei der Dichteoperator{{#set:Fachbegriff=Dichteoperator|Index=Dichteoperator}} durch den Projektionsoperator{{#set:Fachbegriff=Projektionsoperator|Index=Projektionsoperator}} in zwei Anteile zerlegt wird. Wobei Q folglich durch definiert ist.
Die Liouville von Neumann Gleichung kann also durch
dargestellt werden.
Die zweite Zeile wird formal durch
Eingesetzt in die erste Gleichung erhält man die Nakajima-Zwanzig-Gleichung:
Unter der Annahme, dass der inhomogene Term verschwindet, (dies kann man machen wenn man annimmt der irrelevante Anteil der Dichtematrix zum Startzeitpunkt als 0 Definiert wird.) und der Abkürzung
sowie der Ausnutzung von erhält man die endgültige Form
{{#set:Gleichung=Nakajima-Zwanzig-Gleichung|Index=Nakajima-Zwanzig-Gleichung}}