Dirac-Gleichung und Spin: nichtrelativistischer Grenzfall: Difference between revisions
No edit summary |
*>SchuBot Einrückungen Mathematik |
||
Line 7: | Line 7: | ||
{{NumBlk|:| | {{NumBlk|:| | ||
<math>\mathfrak{i} {{\partial }_{t}}\Psi =\left( \underline{\alpha }\left( \underline{\hat{p}}-e\underline{A} \right)+\beta m+e\phi \right)\Psi ,\quad \hbar =c=1</math> | :<math>\mathfrak{i} {{\partial }_{t}}\Psi =\left( \underline{\alpha }\left( \underline{\hat{p}}-e\underline{A} \right)+\beta m+e\phi \right)\Psi ,\quad \hbar =c=1</math> | ||
: |(1.37)|RawN=.}} | : |(1.37)|RawN=.}} | ||
Line 25: | Line 25: | ||
\end{align} \right){{e}^{\frac{-\mathfrak{i} m{{c}^{2}}t}{\hbar }}}</math>, mit den 2er Spinoren | \end{align} \right){{e}^{\frac{-\mathfrak{i} m{{c}^{2}}t}{\hbar }}}</math>, mit den 2er Spinoren | ||
<math>\varphi =\left( \begin{align} | :<math>\varphi =\left( \begin{align} | ||
& {{\varphi }_{1}} \\ | & {{\varphi }_{1}} \\ | ||
Line 44: | Line 44: | ||
{{NumBlk|:| | {{NumBlk|:| | ||
<math>\mathfrak{i} {{\partial }_{t}}\left( \begin{align} | :<math>\mathfrak{i} {{\partial }_{t}}\left( \begin{align} | ||
& \varphi \\ | & \varphi \\ | ||
Line 78: | Line 78: | ||
{{NumBlk|:| | {{NumBlk|:| | ||
<math>\begin{align} | :<math>\begin{align} | ||
& mc{{\chi }^{2}}\gg \left| i\hbar {{\partial }_{t}}\chi \right|,\quad mc{{\chi }^{2}}\gg \left| e\phi \varphi \right| \\ | & mc{{\chi }^{2}}\gg \left| i\hbar {{\partial }_{t}}\chi \right|,\quad mc{{\chi }^{2}}\gg \left| e\phi \varphi \right| \\ | ||
Line 97: | Line 97: | ||
{{NumBlk|:| | {{NumBlk|:| | ||
<math>\begin{align} | :<math>\begin{align} | ||
\left( \underline{\sigma }\underline{A} \right)\left( \underline{\sigma }\underline{B} \right)=\underline{A}\underline{B}\underline{\underline{1}}+\mathfrak{i} \underline{\sigma }\left( \underline{A}\times \underline{B} \right) \\ | \left( \underline{\sigma }\underline{A} \right)\left( \underline{\sigma }\underline{B} \right)=\underline{A}\underline{B}\underline{\underline{1}}+\mathfrak{i} \underline{\sigma }\left( \underline{A}\times \underline{B} \right) \\ | ||
Line 104: | Line 104: | ||
: |(1.41)|RawN=.}} | : |(1.41)|RawN=.}} | ||
mit | mit | ||
<math>\begin{align} | :<math>\begin{align} | ||
\underline{A}=\left( {{A}_{1}},{{A}_{2}},{{A}_{3}} \right),\underline{B}=\left( {{B}_{1}},{{B}_{2}},{{B}_{3}} \right),\underline{A},\underline{B} | \underline{A}=\left( {{A}_{1}},{{A}_{2}},{{A}_{3}} \right),\underline{B}=\left( {{B}_{1}},{{B}_{2}},{{B}_{3}} \right),\underline{A},\underline{B} | ||
\text{ vektorwertiger Operator und} \\ | \text{ vektorwertiger Operator und} \\ | ||
Line 119: | Line 119: | ||
{{NumBlk|:| | {{NumBlk|:| | ||
<math>\begin{align} | :<math>\begin{align} | ||
& \left\{ {{{\underline{\underline{\sigma }}}}_{i}},{{{\underline{\underline{\sigma }}}}_{j}} \right\}:={{{\underline{\underline{\sigma }}}}_{i}}{{{\underline{\underline{\sigma }}}}_{j}}+{{{\underline{\underline{\sigma }}}}_{j}}{{{\underline{\underline{\sigma }}}}_{i}}=2{{\delta }_{ij}}\underline{\underline{1}} \\ | & \left\{ {{{\underline{\underline{\sigma }}}}_{i}},{{{\underline{\underline{\sigma }}}}_{j}} \right\}:={{{\underline{\underline{\sigma }}}}_{i}}{{{\underline{\underline{\sigma }}}}_{j}}+{{{\underline{\underline{\sigma }}}}_{j}}{{{\underline{\underline{\sigma }}}}_{i}}=2{{\delta }_{ij}}\underline{\underline{1}} \\ |
Revision as of 15:37, 12 September 2010
65px|Kein GFDL | Der Artikel Dirac-Gleichung und Spin: nichtrelativistischer Grenzfall basiert auf der Vorlesungsmitschrift von Moritz Schubotz des 1.Kapitels (Abschnitt 5) der Quantenmechanikvorlesung von Prof. Dr. T. Brandes. |
|}}
{{#set:Urheber=Prof. Dr. T. Brandes|Inhaltstyp=Script|Kapitel=1|Abschnitt=5}} Kategorie:Quantenmechanik __SHOWFACTBOX__
Mit (Vektor) Potential haben wir die Dirac-Gleichung{{#set:Fachbegriff=Dirac-Gleichung|Index=Dirac-Gleichung}} als
Jetzt erfolgt die Zerlegung , mit den 2er Spinoren
Damit folgt dann
Beachte das jetzt überall gilt
Jetzt: Näherung/Annahme das kinetische und potentielle Energie viel kleiner als Ruhemasse ist
einsetzen in die Gleichung (1.38) liefert
Jetzt folgendes „Theorem“ benutzen
mit
Beweis von (1.41) mittels (Anti) Kommutator-Eigenschaften{{#set:Fachbegriff=Kommutator-Eigenschaften|Index=Kommutator-Eigenschaften}} (AUFGABE)
Es gilt weiterhin (AUFGABE), beachte und
Mit (1.43) folgt aus (1.41) die Kopplung von Spin und Magnetfeld
Pauli-Gleichung{{#set:Fachbegriff=Pauli-Gleichung|Index=Pauli-Gleichung}}
(1.44)
mit dem 2-Komponentigen Spinor
Literatur
LITERATUR: GREINER