Das ideale Fermigas: Difference between revisions

From testwiki
Jump to navigation Jump to search
No edit summary
*>SchuBot
No edit summary
Line 5: Line 5:
'''Großkanonischer Statistischer Operator:'''
'''Großkanonischer Statistischer Operator:'''


<math>\hat{\rho }={{Y}^{-1}}\exp \left( -\beta \left( \hat{H}-\mu \hat{N} \right) \right)</math>
:<math>\hat{\rho }={{Y}^{-1}}\exp \left( -\beta \left( \hat{H}-\mu \hat{N} \right) \right)</math>


Die Wahrscheinlichkeit, das System in einem bestimmten Zustand zu finden ist gleich dem Erwartungswert des statistischen Operators in diesem Zustand:
Die Wahrscheinlichkeit, das System in einem bestimmten Zustand zu finden ist gleich dem Erwartungswert des statistischen Operators in diesem Zustand:
Line 13: Line 13:
:
:


<math>{{E}_{\alpha }}^{ges.}=\sum\limits_{j=1}^{l}{{}}{{E}_{j}}{{N}_{j}}</math>
:<math>{{E}_{\alpha }}^{ges.}=\sum\limits_{j=1}^{l}{{}}{{E}_{j}}{{N}_{j}}</math>


mit der Einteilchenenergie Ej und den Besetzungszahlen Nj
mit der Einteilchenenergie Ej und den Besetzungszahlen Nj
Line 19: Line 19:
Diese Wahrscheinlichkeit ist:
Diese Wahrscheinlichkeit ist:


<math>{{P}_{\alpha }}=\left\langle  \alpha  \right|\hat{\rho }\left| \alpha  \right\rangle ={{Y}^{-1}}\left\langle  \alpha  \right|\exp \left( -\beta \left( \hat{H}-\mu \hat{N} \right) \right)\left| \alpha  \right\rangle ={{Y}^{-1}}\exp \left( -\beta \sum\limits_{j=1}^{l}{{}}\left( {{N}_{j}}{{E}_{j}}-\mu {{N}_{j}} \right) \right)</math>
:<math>{{P}_{\alpha }}=\left\langle  \alpha  \right|\hat{\rho }\left| \alpha  \right\rangle ={{Y}^{-1}}\left\langle  \alpha  \right|\exp \left( -\beta \left( \hat{H}-\mu \hat{N} \right) \right)\left| \alpha  \right\rangle ={{Y}^{-1}}\exp \left( -\beta \sum\limits_{j=1}^{l}{{}}\left( {{N}_{j}}{{E}_{j}}-\mu {{N}_{j}} \right) \right)</math>


Dies ist ein Ergebnis für einen Zustand !
Dies ist ein Ergebnis für einen Zustand !
Line 25: Line 25:
Die Großkanonsiche Zustandsumme Y gewinnt man, indem man über alle möglichen Vielteilchenzustände noch summiert, also:
Die Großkanonsiche Zustandsumme Y gewinnt man, indem man über alle möglichen Vielteilchenzustände noch summiert, also:


<math>Y=\sum\limits_{{{N}_{1}}...{{N}_{l}}}^{{}}{{}}\exp \left( -\beta \sum\limits_{j=1}^{l}{{}}\left( {{N}_{j}}{{E}_{j}}-\mu {{N}_{j}} \right) \right)=\prod\limits_{j=1}^{l}{{}}\left( \sum\limits_{{{N}_{j}}}^{{}}{{}}\exp \left( -\beta \left( {{N}_{j}}{{E}_{j}}-\mu {{N}_{j}} \right) \right) \right)</math>
:<math>Y=\sum\limits_{{{N}_{1}}...{{N}_{l}}}^{{}}{{}}\exp \left( -\beta \sum\limits_{j=1}^{l}{{}}\left( {{N}_{j}}{{E}_{j}}-\mu {{N}_{j}} \right) \right)=\prod\limits_{j=1}^{l}{{}}\left( \sum\limits_{{{N}_{j}}}^{{}}{{}}\exp \left( -\beta \left( {{N}_{j}}{{E}_{j}}-\mu {{N}_{j}} \right) \right) \right)</math>


Jetzt muss bei der Auswertung die unterschiedliche Teilchenart berücksichtigt werden, nämlich in der Summation über Nj. Handelt es sich um Fermionen, so wird nur bis 1 summiert. Handelt es sich um Bosonen, so wird bis unendlich summiert !
Jetzt muss bei der Auswertung die unterschiedliche Teilchenart berücksichtigt werden, nämlich in der Summation über Nj. Handelt es sich um Fermionen, so wird nur bis 1 summiert. Handelt es sich um Bosonen, so wird bis unendlich summiert !
Line 31: Line 31:
====Fermionen====
====Fermionen====


<math>\begin{align}
:<math>\begin{align}


& Y=\sum\limits_{{{N}_{1}}...{{N}_{l}}=0}^{1}{{}}\exp \left( -\beta \sum\limits_{j=1}^{l}{{}}\left( {{N}_{j}}{{E}_{j}}-\mu {{N}_{j}} \right) \right)=\prod\limits_{j=1}^{l}{{}}\left( \sum\limits_{{{N}_{j}}=0}^{1}{{}}\exp \left( -\beta \left( {{N}_{j}}{{E}_{j}}-\mu {{N}_{j}} \right) \right) \right) \\
& Y=\sum\limits_{{{N}_{1}}...{{N}_{l}}=0}^{1}{{}}\exp \left( -\beta \sum\limits_{j=1}^{l}{{}}\left( {{N}_{j}}{{E}_{j}}-\mu {{N}_{j}} \right) \right)=\prod\limits_{j=1}^{l}{{}}\left( \sum\limits_{{{N}_{j}}=0}^{1}{{}}\exp \left( -\beta \left( {{N}_{j}}{{E}_{j}}-\mu {{N}_{j}} \right) \right) \right) \\
Line 45: Line 45:
Also folgt:
Also folgt:


<math>P\left( {{N}_{1}},...,{{N}_{l}} \right)=\prod\limits_{j=1}^{l}{{}}\frac{{{t}_{j}}^{{{N}_{j}}}}{\left( 1+{{t}_{j}} \right)}=\prod\limits_{j=1}^{l}{{}}P\left( {{N}_{j}} \right)</math>
:<math>P\left( {{N}_{1}},...,{{N}_{l}} \right)=\prod\limits_{j=1}^{l}{{}}\frac{{{t}_{j}}^{{{N}_{j}}}}{\left( 1+{{t}_{j}} \right)}=\prod\limits_{j=1}^{l}{{}}P\left( {{N}_{j}} \right)</math>


separiert !!
separiert !!
Line 61: Line 61:
mit
mit


<math>\begin{align}
:<math>\begin{align}


& {{\Psi }_{j}}=-\ln {{Y}_{j}}=-\ln \left( 1+{{t}_{j}} \right) \\
& {{\Psi }_{j}}=-\ln {{Y}_{j}}=-\ln \left( 1+{{t}_{j}} \right) \\
Line 71: Line 71:
folgt:
folgt:


<math>\left\langle {{N}_{j}} \right\rangle =\frac{\partial {{\Psi }_{j}}}{\partial \alpha }=\frac{1}{\beta }\frac{\partial }{\partial \mu }\ln {{Y}_{j}}=\frac{{{t}_{j}}}{1+{{t}_{j}}}=\frac{1}{{{t}_{j}}^{-1}+1}</math>
:<math>\left\langle {{N}_{j}} \right\rangle =\frac{\partial {{\Psi }_{j}}}{\partial \alpha }=\frac{1}{\beta }\frac{\partial }{\partial \mu }\ln {{Y}_{j}}=\frac{{{t}_{j}}}{1+{{t}_{j}}}=\frac{1}{{{t}_{j}}^{-1}+1}</math>


Also:
Also:


<math>\Rightarrow \left\langle {{N}_{j}} \right\rangle =\frac{1}{\exp \left( \frac{{{E}_{j}}-\mu }{kT} \right)+1}</math>
:<math>\Rightarrow \left\langle {{N}_{j}} \right\rangle =\frac{1}{\exp \left( \frac{{{E}_{j}}-\mu }{kT} \right)+1}</math>


Die Fermi- Verteilung !
Die Fermi- Verteilung !
Line 81: Line 81:
Dies folgt auch explizit aus
Dies folgt auch explizit aus


<math>\left\langle {{N}_{j}} \right\rangle =\sum\limits_{{{N}_{1}}=0}^{1}{{}}\sum\limits_{{{N}_{2}}=0}^{1}{{}}...\left\{ {{N}_{j}}\frac{{{t}_{1}}^{{{N}_{1}}}}{1+{{t}_{1}}}...\frac{{{t}_{j}}^{{{N}_{j}}}}{1+{{t}_{j}}}.... \right\}=\sum\limits_{{{N}_{j}}=0}^{1}{{}}{{N}_{j}}.\frac{{{t}_{j}}^{{{N}_{j}}}}{1+{{t}_{j}}}=\frac{0{{t}_{j}}^{0}+1{{t}_{j}}}{1+{{t}_{j}}}=\frac{{{t}_{j}}}{1+{{t}_{j}}}</math>
:<math>\left\langle {{N}_{j}} \right\rangle =\sum\limits_{{{N}_{1}}=0}^{1}{{}}\sum\limits_{{{N}_{2}}=0}^{1}{{}}...\left\{ {{N}_{j}}\frac{{{t}_{1}}^{{{N}_{1}}}}{1+{{t}_{1}}}...\frac{{{t}_{j}}^{{{N}_{j}}}}{1+{{t}_{j}}}.... \right\}=\sum\limits_{{{N}_{j}}=0}^{1}{{}}{{N}_{j}}.\frac{{{t}_{j}}^{{{N}_{j}}}}{1+{{t}_{j}}}=\frac{0{{t}_{j}}^{0}+1{{t}_{j}}}{1+{{t}_{j}}}=\frac{{{t}_{j}}}{1+{{t}_{j}}}</math>


speziell folgt dies auch aus
speziell folgt dies auch aus


<math>\left\langle {{N}_{j}} \right\rangle =p\left( {{N}_{j}}=1 \right)=\frac{{{t}_{j}}}{1+{{t}_{j}}}</math>
:<math>\left\langle {{N}_{j}} \right\rangle =p\left( {{N}_{j}}=1 \right)=\frac{{{t}_{j}}}{1+{{t}_{j}}}</math>


aber nur wegen Nj = 0,1
aber nur wegen Nj = 0,1
Line 94: Line 94:
Für T -> 0:
Für T -> 0:


<math>\left\langle {{N}_{j}} \right\rangle \to \Theta \left( \mu -{{E}_{j}} \right)</math>
:<math>\left\langle {{N}_{j}} \right\rangle \to \Theta \left( \mu -{{E}_{j}} \right)</math>


( Stufenfunktion), sogenannter Quantenlimes !
( Stufenfunktion), sogenannter Quantenlimes !
Line 104: Line 104:
der Breite <math>\approx kT</math>
der Breite <math>\approx kT</math>


<math>{{E}_{j}}-\mu >>kT</math>
:<math>{{E}_{j}}-\mu >>kT</math>


( sehr hohe Energien)
( sehr hohe Energien)
Line 110: Line 110:
->
->


<math>\left\langle {{N}_{j}} \right\rangle \tilde{\ }\exp \left( -\frac{{{E}_{j}}-\mu }{kT} \right)</math>
:<math>\left\langle {{N}_{j}} \right\rangle \tilde{\ }\exp \left( -\frac{{{E}_{j}}-\mu }{kT} \right)</math>


* die Fermiverteilung nähert sich der Boltzmann- Verteilung an ( klassischer Grenzfall !!)
* die Fermiverteilung nähert sich der Boltzmann- Verteilung an ( klassischer Grenzfall !!)
Line 137: Line 137:
'''Gesamte mittlere Teilchenzahl'''
'''Gesamte mittlere Teilchenzahl'''


<math>\bar{N}=\sum\limits_{j=1}^{l}{{}}\left\langle {{N}_{j}} \right\rangle </math>
:<math>\bar{N}=\sum\limits_{j=1}^{l}{{}}\left\langle {{N}_{j}} \right\rangle </math>


'''thermische Zustandsgleichung'''
'''thermische Zustandsgleichung'''


<math>pV=kT\ln Y=kT\sum\limits_{j=1}^{l}{{}}\ln {{Y}_{i}}=kT\sum\limits_{j=1}^{l}{{}}\ln \left( 1+\exp \left( \beta \left( \mu -{{E}_{j}} \right) \right) \right)</math>
:<math>pV=kT\ln Y=kT\sum\limits_{j=1}^{l}{{}}\ln {{Y}_{i}}=kT\sum\limits_{j=1}^{l}{{}}\ln \left( 1+\exp \left( \beta \left( \mu -{{E}_{j}} \right) \right) \right)</math>


====Energie und Zustandsdichte freier Teilchen====
====Energie und Zustandsdichte freier Teilchen====
Line 147: Line 147:
Energie- Eigenwerte:
Energie- Eigenwerte:


<math>{{E}_{j}}=\frac{{{{\bar{k}}}^{2}}{{\hbar }^{2}}}{2m}</math>
:<math>{{E}_{j}}=\frac{{{{\bar{k}}}^{2}}{{\hbar }^{2}}}{2m}</math>


Das System sei in einem Würfel V = L³ eingeschlossen !
Das System sei in einem Würfel V = L³ eingeschlossen !
Line 153: Line 153:
Zyklische Randbedingungen  ( Born - v. Karman):
Zyklische Randbedingungen  ( Born - v. Karman):


<math>\begin{align}
:<math>\begin{align}


& {{\Psi }_{j}}\left( {\bar{r}} \right)=\frac{1}{\sqrt{V}}{{e}^{i\bar{k}\bar{r}}} \\
& {{\Psi }_{j}}\left( {\bar{r}} \right)=\frac{1}{\sqrt{V}}{{e}^{i\bar{k}\bar{r}}} \\
Line 167: Line 167:
Ein Zustand im k- Raum beansprucht also das Volumen:
Ein Zustand im k- Raum beansprucht also das Volumen:


<math>{{\left( \Delta k \right)}^{3}}={{\left( \frac{2\pi }{L} \right)}^{3}}\Delta {{n}_{1}}\Delta {{n}_{2}}\Delta {{n}_{3}}={{\left( \frac{2\pi }{L} \right)}^{3}}=\left( \frac{8{{\pi }^{3}}}{V} \right)</math>
:<math>{{\left( \Delta k \right)}^{3}}={{\left( \frac{2\pi }{L} \right)}^{3}}\Delta {{n}_{1}}\Delta {{n}_{2}}\Delta {{n}_{3}}={{\left( \frac{2\pi }{L} \right)}^{3}}=\left( \frac{8{{\pi }^{3}}}{V} \right)</math>


Dabei wurde jedoch kein Spin berücksichtigt !
Dabei wurde jedoch kein Spin berücksichtigt !
Line 175: Line 175:
'''Übergang zum Quasikontinuum:'''
'''Übergang zum Quasikontinuum:'''


<math>\begin{align}
:<math>\begin{align}


& \sum\limits_{j}{{}}\to \left( \frac{V}{8{{\pi }^{3}}} \right)\int_{{}}^{{}}{{}}{{d}^{3}}k \\
& \sum\limits_{j}{{}}\to \left( \frac{V}{8{{\pi }^{3}}} \right)\int_{{}}^{{}}{{}}{{d}^{3}}k \\
Line 193: Line 193:
'''Kugelsymmetrisches Integral:'''
'''Kugelsymmetrisches Integral:'''


<math>\to \sum\limits_{j}{{}}\to \left( \frac{V}{8{{\pi }^{3}}{{\hbar }^{3}}} \right)\int_{{}}^{{}}{{}}{{d}^{3}}p=\left( \frac{V}{{{h}^{3}}} \right)\int_{{}}^{{}}{{}}{{d}^{3}}p=\left( 2s+1 \right)\left( \frac{V}{{{h}^{3}}} \right)4\pi \int_{{}}^{{}}{{}}{{p}^{2}}dp</math>
:<math>\to \sum\limits_{j}{{}}\to \left( \frac{V}{8{{\pi }^{3}}{{\hbar }^{3}}} \right)\int_{{}}^{{}}{{}}{{d}^{3}}p=\left( \frac{V}{{{h}^{3}}} \right)\int_{{}}^{{}}{{}}{{d}^{3}}p=\left( 2s+1 \right)\left( \frac{V}{{{h}^{3}}} \right)4\pi \int_{{}}^{{}}{{}}{{p}^{2}}dp</math>


<u>'''Großkanonische Zustandssumme:'''</u>
<u>'''Großkanonische Zustandssumme:'''</u>


<math>\begin{align}
:<math>\begin{align}


& \ln Y=\sum\limits_{j}{{}}\ln \left( 1+\xi {{e}^{-\beta {{E}_{j}}}} \right) \\
& \ln Y=\sum\limits_{j}{{}}\ln \left( 1+\xi {{e}^{-\beta {{E}_{j}}}} \right) \\
Line 207: Line 207:
sogenannte Fugizität !
sogenannte Fugizität !


<math>\begin{align}
:<math>\begin{align}


& \ln Y=\sum\limits_{j}{{}}\ln \left( 1+\xi {{e}^{-\beta {{E}_{j}}}} \right) \\
& \ln Y=\sum\limits_{j}{{}}\ln \left( 1+\xi {{e}^{-\beta {{E}_{j}}}} \right) \\
Line 217: Line 217:
'''Partielle Integration:'''
'''Partielle Integration:'''


<math>\begin{align}
:<math>\begin{align}


& \ln Y\approx \left( 2s+1 \right)\left( \frac{V}{{{h}^{3}}} \right)4\pi \int_{0}^{\infty }{{}}{{p}^{2}}dp\ln \left( 1+\xi {{e}^{-\beta \frac{{{p}^{2}}}{2m}}} \right) \\
& \ln Y\approx \left( 2s+1 \right)\left( \frac{V}{{{h}^{3}}} \right)4\pi \int_{0}^{\infty }{{}}{{p}^{2}}dp\ln \left( 1+\xi {{e}^{-\beta \frac{{{p}^{2}}}{2m}}} \right) \\
Line 235: Line 235:
, also:
, also:


<math>\ln Y=\frac{2}{3}\beta \left( 2s+1 \right)\left( \frac{V}{{{h}^{3}}} \right)4\pi \int_{0}^{\infty }{{}}dp{{p}^{2}}\left\langle N(p) \right\rangle E(p)</math>
:<math>\ln Y=\frac{2}{3}\beta \left( 2s+1 \right)\left( \frac{V}{{{h}^{3}}} \right)4\pi \int_{0}^{\infty }{{}}dp{{p}^{2}}\left\langle N(p) \right\rangle E(p)</math>


<u>'''Diskret:'''</u>
<u>'''Diskret:'''</u>


<math>\begin{align}
:<math>\begin{align}


& \ln Y=\frac{2}{3}\beta \sum\limits_{j=1}^{l}{{}}\left\langle {{N}_{j}} \right\rangle {{E}_{j}}=\frac{2}{3}\beta U \\
& \ln Y=\frac{2}{3}\beta \sum\limits_{j=1}^{l}{{}}\left\langle {{N}_{j}} \right\rangle {{E}_{j}}=\frac{2}{3}\beta U \\
Line 249: Line 249:
Somit haben wir die thermische Zustands-Gleichung
Somit haben wir die thermische Zustands-Gleichung


<math>pV=kT\ln Y=\frac{2}{3}U=\frac{2}{3}\left\langle {{E}^{ges.}} \right\rangle </math>
:<math>pV=kT\ln Y=\frac{2}{3}U=\frac{2}{3}\left\langle {{E}^{ges.}} \right\rangle </math>


'''Bemerkungen'''
'''Bemerkungen'''
Line 257: Line 257:
Klassisch:
Klassisch:


<math>\begin{align}
:<math>\begin{align}


& pV=\bar{N}kT \\
& pV=\bar{N}kT \\
Line 275: Line 275:
Klassischer Grenzfall der Fermi- Verteilung:
Klassischer Grenzfall der Fermi- Verteilung:


<math>\left\langle N\left( p \right) \right\rangle =\frac{1}{\left( \frac{1}{\xi }{{e}^{\beta \frac{{{p}^{2}}}{2m}}}+1 \right)}\approx \xi {{e}^{-\beta \frac{{{p}^{2}}}{2m}}}</math>
:<math>\left\langle N\left( p \right) \right\rangle =\frac{1}{\left( \frac{1}{\xi }{{e}^{\beta \frac{{{p}^{2}}}{2m}}}+1 \right)}\approx \xi {{e}^{-\beta \frac{{{p}^{2}}}{2m}}}</math>


( Maxwell- Boltzmann- Verteilung)
( Maxwell- Boltzmann- Verteilung)
Line 296: Line 296:
<u>'''Gesamte Teilchenzahl:'''</u>
<u>'''Gesamte Teilchenzahl:'''</u>


<math>\bar{N}=\left( 2s+1 \right)\left( \frac{V}{{{h}^{3}}} \right)4\pi \int_{0}^{\infty }{{}}dp{{p}^{2}}\frac{1}{\left( {{e}^{\beta \left( \frac{{{p}^{2}}}{2m}-\mu  \right)}}+1 \right)}</math>
:<math>\bar{N}=\left( 2s+1 \right)\left( \frac{V}{{{h}^{3}}} \right)4\pi \int_{0}^{\infty }{{}}dp{{p}^{2}}\frac{1}{\left( {{e}^{\beta \left( \frac{{{p}^{2}}}{2m}-\mu  \right)}}+1 \right)}</math>


<u>'''Innere Energie:'''</u>
<u>'''Innere Energie:'''</u>


<math>U=\left( 2s+1 \right)\left( \frac{V}{{{h}^{3}}} \right)4\pi \int_{0}^{\infty }{{}}dp{{p}^{2}}\frac{\frac{{{p}^{2}}}{2m}}{\left( {{e}^{\beta \left( \frac{{{p}^{2}}}{2m}-\mu  \right)}}+1 \right)}</math>
:<math>U=\left( 2s+1 \right)\left( \frac{V}{{{h}^{3}}} \right)4\pi \int_{0}^{\infty }{{}}dp{{p}^{2}}\frac{\frac{{{p}^{2}}}{2m}}{\left( {{e}^{\beta \left( \frac{{{p}^{2}}}{2m}-\mu  \right)}}+1 \right)}</math>


<u>'''Substitution'''</u>
<u>'''Substitution'''</u>


<math>\begin{align}
:<math>\begin{align}


& \frac{{{p}^{2}}}{2mkT}=y \\
& \frac{{{p}^{2}}}{2mkT}=y \\
Line 320: Line 320:
====Definition: Fermi- Dirac- Integral der Ordnung s:====
====Definition: Fermi- Dirac- Integral der Ordnung s:====


<math>\begin{align}
:<math>\begin{align}


& {{F}_{s}}\left( \eta  \right):=\frac{1}{\Gamma \left( s+1 \right)}\int_{0}^{\infty }{{}}dy\frac{{{y}^{s}}}{\left( {{e}^{y-\eta }}+1 \right)} \\
& {{F}_{s}}\left( \eta  \right):=\frac{1}{\Gamma \left( s+1 \right)}\int_{0}^{\infty }{{}}dy\frac{{{y}^{s}}}{\left( {{e}^{y-\eta }}+1 \right)} \\
Line 330: Line 330:
<u>'''Entwicklung für'''</u>
<u>'''Entwicklung für'''</u>


<math>\eta >>1\Rightarrow \xi >>1</math>
:<math>\eta >>1\Rightarrow \xi >>1</math>


, also Entartung:
, also Entartung:


<math>\begin{align}
:<math>\begin{align}


& \Gamma \left( s+1 \right){{F}_{s}}\left( \eta  \right):=\int_{0}^{\infty }{{}}dy\frac{{{y}^{s}}}{\left( {{e}^{y-\eta }}+1 \right)}=\frac{1}{s+1}\int_{0}^{\infty }{{}}dy\frac{d}{dy}\left( {{y}^{s+1}} \right)\frac{1}{\left( {{e}^{y-\eta }}+1 \right)} \\
& \Gamma \left( s+1 \right){{F}_{s}}\left( \eta  \right):=\int_{0}^{\infty }{{}}dy\frac{{{y}^{s}}}{\left( {{e}^{y-\eta }}+1 \right)}=\frac{1}{s+1}\int_{0}^{\infty }{{}}dy\frac{d}{dy}\left( {{y}^{s+1}} \right)\frac{1}{\left( {{e}^{y-\eta }}+1 \right)} \\
Line 346: Line 346:
weitere Substitution:
weitere Substitution:


<math>\begin{align}
:<math>\begin{align}


& x=y-\eta  \\
& x=y-\eta  \\
Line 360: Line 360:
:
:


<math>\begin{align}
:<math>\begin{align}


& x=y-\eta  \\
& x=y-\eta  \\
Line 372: Line 372:
Dies kann man durch Entwicklung von
Dies kann man durch Entwicklung von


<math>{{\left( x+\eta  \right)}^{s+1}}</math>
:<math>{{\left( x+\eta  \right)}^{s+1}}</math>


lösen:
lösen:


<math>{{\left( x+\eta  \right)}^{s+1}}\approx {{\left( \eta  \right)}^{s+1}}+\left( s+1 \right){{\left( \eta  \right)}^{s}}x+\frac{s\left( s+1 \right)}{2}{{\left( \eta  \right)}^{s-1}}{{x}^{2}}+....</math>
:<math>{{\left( x+\eta  \right)}^{s+1}}\approx {{\left( \eta  \right)}^{s+1}}+\left( s+1 \right){{\left( \eta  \right)}^{s}}x+\frac{s\left( s+1 \right)}{2}{{\left( \eta  \right)}^{s-1}}{{x}^{2}}+....</math>


Somit:
Somit:


<math>\begin{align}
:<math>\begin{align}


& \Gamma \left( s+1 \right){{F}_{s}}\left( \eta  \right)=\frac{1}{s+1}\int_{-\eta }^{\infty }{{}}dx{{\left( x+\eta  \right)}^{s+1}}\frac{{{e}^{x}}}{{{\left( {{e}^{x}}+1 \right)}^{2}}}\approx \frac{1}{s+1}\int_{-\infty }^{\infty }{{}}dx{{\left( x+\eta  \right)}^{s+1}}\frac{{{e}^{x}}}{{{\left( {{e}^{x}}+1 \right)}^{2}}}+O\left( {{e}^{-\eta }} \right) \\
& \Gamma \left( s+1 \right){{F}_{s}}\left( \eta  \right)=\frac{1}{s+1}\int_{-\eta }^{\infty }{{}}dx{{\left( x+\eta  \right)}^{s+1}}\frac{{{e}^{x}}}{{{\left( {{e}^{x}}+1 \right)}^{2}}}\approx \frac{1}{s+1}\int_{-\infty }^{\infty }{{}}dx{{\left( x+\eta  \right)}^{s+1}}\frac{{{e}^{x}}}{{{\left( {{e}^{x}}+1 \right)}^{2}}}+O\left( {{e}^{-\eta }} \right) \\
Line 392: Line 392:
Für die Terme gilt im Einzelnen:
Für die Terme gilt im Einzelnen:


<math>\begin{align}
:<math>\begin{align}


& \int_{-\infty }^{\infty }{{}}dx\frac{{{e}^{x}}}{{{\left( {{e}^{x}}+1 \right)}^{2}}}=\left[ \frac{-1}{\left( {{e}^{x}}+1 \right)} \right]_{-\infty }^{\infty }=1 \\
& \int_{-\infty }^{\infty }{{}}dx\frac{{{e}^{x}}}{{{\left( {{e}^{x}}+1 \right)}^{2}}}=\left[ \frac{-1}{\left( {{e}^{x}}+1 \right)} \right]_{-\infty }^{\infty }=1 \\
Line 404: Line 404:
Bleibt Integral I zu lösen:
Bleibt Integral I zu lösen:


<math>\begin{align}
:<math>\begin{align}


& I=\int_{-\infty }^{\infty }{{}}dx{{x}^{2}}\frac{{{e}^{x}}}{{{\left( {{e}^{x}}+1 \right)}^{2}}}=2\int_{0}^{\infty }{{}}dx{{x}^{2}}\frac{{{e}^{x}}}{{{\left( {{e}^{x}}+1 \right)}^{2}}}=-2\left[ {{x}^{2}}\frac{1}{\left( {{e}^{x}}+1 \right)} \right]_{0}^{\infty }+4\int_{0}^{\infty }{{}}dx\frac{x}{\left( {{e}^{x}}+1 \right)} \\
& I=\int_{-\infty }^{\infty }{{}}dx{{x}^{2}}\frac{{{e}^{x}}}{{{\left( {{e}^{x}}+1 \right)}^{2}}}=2\int_{0}^{\infty }{{}}dx{{x}^{2}}\frac{{{e}^{x}}}{{{\left( {{e}^{x}}+1 \right)}^{2}}}=-2\left[ {{x}^{2}}\frac{1}{\left( {{e}^{x}}+1 \right)} \right]_{0}^{\infty }+4\int_{0}^{\infty }{{}}dx\frac{x}{\left( {{e}^{x}}+1 \right)} \\
Line 418: Line 418:
Somit ergibt sich das Fermi- Dirac- Integral gemäß
Somit ergibt sich das Fermi- Dirac- Integral gemäß


<math>\begin{align}
:<math>\begin{align}


& \Gamma \left( s+1 \right){{F}_{s}}\left( \eta  \right)\approx \frac{{{\left( \eta  \right)}^{s+1}}}{s+1}+\frac{s}{2}{{\left( \eta  \right)}^{s-1}}\frac{{{\pi }^{2}}}{3} \\
& \Gamma \left( s+1 \right){{F}_{s}}\left( \eta  \right)\approx \frac{{{\left( \eta  \right)}^{s+1}}}{s+1}+\frac{s}{2}{{\left( \eta  \right)}^{s-1}}\frac{{{\pi }^{2}}}{3} \\
Line 430: Line 430:
'''Speziell:'''
'''Speziell:'''


<math>\begin{align}
:<math>\begin{align}


& {{F}_{\frac{1}{2}}}\left( \eta  \right)\approx \frac{2}{\sqrt{\pi }}\left[ \frac{{{\left( \eta  \right)}^{\frac{3}{2}}}}{\frac{3}{2}}+\frac{{{\pi }^{2}}}{12}{{\left( \eta  \right)}^{-\frac{1}{2}}} \right] \\
& {{F}_{\frac{1}{2}}}\left( \eta  \right)\approx \frac{2}{\sqrt{\pi }}\left[ \frac{{{\left( \eta  \right)}^{\frac{3}{2}}}}{\frac{3}{2}}+\frac{{{\pi }^{2}}}{12}{{\left( \eta  \right)}^{-\frac{1}{2}}} \right] \\
Line 440: Line 440:
Also:
Also:


<math>\begin{align}
:<math>\begin{align}


& \bar{N}=\frac{\left( 2s+1 \right)}{2}\left( \frac{V}{{{h}^{3}}} \right)4\pi {{\left( 2mkT \right)}^{\frac{3}{2}}}\int_{0}^{\infty }{{}}dy\frac{{{y}^{\frac{1}{2}}}}{\left( {{e}^{y-\eta }}+1 \right)}=\frac{\left( 2s+1 \right)}{2}\left( \frac{V}{{{h}^{3}}} \right)4\pi {{\left( 2mkT \right)}^{\frac{3}{2}}}\left[ \frac{2}{3}{{\left( \frac{\mu }{kT} \right)}^{\frac{3}{2}}}+\frac{{{\pi }^{2}}}{12}{{\left( \frac{\mu }{kT} \right)}^{-\frac{1}{2}}} \right] \\
& \bar{N}=\frac{\left( 2s+1 \right)}{2}\left( \frac{V}{{{h}^{3}}} \right)4\pi {{\left( 2mkT \right)}^{\frac{3}{2}}}\int_{0}^{\infty }{{}}dy\frac{{{y}^{\frac{1}{2}}}}{\left( {{e}^{y-\eta }}+1 \right)}=\frac{\left( 2s+1 \right)}{2}\left( \frac{V}{{{h}^{3}}} \right)4\pi {{\left( 2mkT \right)}^{\frac{3}{2}}}\left[ \frac{2}{3}{{\left( \frac{\mu }{kT} \right)}^{\frac{3}{2}}}+\frac{{{\pi }^{2}}}{12}{{\left( \frac{\mu }{kT} \right)}^{-\frac{1}{2}}} \right] \\
Line 450: Line 450:
<u>Definition: Fermi- Energie:</u>
<u>Definition: Fermi- Energie:</u>


<math>{{E}_{F}}:=\mu \left( T=0,\bar{N},V \right)</math>
:<math>{{E}_{F}}:=\mu \left( T=0,\bar{N},V \right)</math>


Bei T= 0 Kelvin sind die Zustände mit <math>E<{{E}_{F}}</math>
Bei T= 0 Kelvin sind die Zustände mit <math>E<{{E}_{F}}</math>
Line 466: Line 466:
<u>'''T->0'''</u>
<u>'''T->0'''</u>


<math>\begin{align}
:<math>\begin{align}


& \bar{N}=\frac{2}{3}\frac{\left( 2s+1 \right)}{2}\left( \frac{V}{{{h}^{3}}} \right)4\pi {{\left( 2m\mu  \right)}^{\frac{3}{2}}}\left[ 1+\frac{{{\pi }^{2}}}{8}{{\left( \frac{kT}{\mu } \right)}^{2}} \right]=\frac{2}{3}\frac{\left( 2s+1 \right)}{2}\left( \frac{V}{{{h}^{3}}} \right)4\pi {{\left( 2m{{E}_{F}} \right)}^{\frac{3}{2}}} \\
& \bar{N}=\frac{2}{3}\frac{\left( 2s+1 \right)}{2}\left( \frac{V}{{{h}^{3}}} \right)4\pi {{\left( 2m\mu  \right)}^{\frac{3}{2}}}\left[ 1+\frac{{{\pi }^{2}}}{8}{{\left( \frac{kT}{\mu } \right)}^{2}} \right]=\frac{2}{3}\frac{\left( 2s+1 \right)}{2}\left( \frac{V}{{{h}^{3}}} \right)4\pi {{\left( 2m{{E}_{F}} \right)}^{\frac{3}{2}}} \\
Line 476: Line 476:
Für größere Temperaturen T>0 wird nun
Für größere Temperaturen T>0 wird nun


<math>\begin{align}
:<math>\begin{align}


& \bar{N}=\frac{2}{3}\frac{\left( 2s+1 \right)}{2}\left( \frac{V}{{{h}^{3}}} \right)4\pi {{\left( 2m{{E}_{F}} \right)}^{\frac{3}{2}}} \\
& \bar{N}=\frac{2}{3}\frac{\left( 2s+1 \right)}{2}\left( \frac{V}{{{h}^{3}}} \right)4\pi {{\left( 2m{{E}_{F}} \right)}^{\frac{3}{2}}} \\
Line 488: Line 488:
entwickelt und diese Entwicklung dann eingesetzt in die Formel
entwickelt und diese Entwicklung dann eingesetzt in die Formel


<math>\begin{align}
:<math>\begin{align}


& \bar{N}=\frac{2}{3}\frac{\left( 2s+1 \right)}{2}\left( \frac{V}{{{h}^{3}}} \right)4\pi {{\left( 2m\mu  \right)}^{\frac{3}{2}}}\left[ 1+\frac{{{\pi }^{2}}}{8}{{\left( \frac{kT}{\mu } \right)}^{2}} \right]=\frac{2}{3}\frac{\left( 2s+1 \right)}{2}\left( \frac{V}{{{h}^{3}}} \right)4\pi {{\left( 2m{{E}_{F}} \right)}^{\frac{3}{2}}} \\
& \bar{N}=\frac{2}{3}\frac{\left( 2s+1 \right)}{2}\left( \frac{V}{{{h}^{3}}} \right)4\pi {{\left( 2m\mu  \right)}^{\frac{3}{2}}}\left[ 1+\frac{{{\pi }^{2}}}{8}{{\left( \frac{kT}{\mu } \right)}^{2}} \right]=\frac{2}{3}\frac{\left( 2s+1 \right)}{2}\left( \frac{V}{{{h}^{3}}} \right)4\pi {{\left( 2m{{E}_{F}} \right)}^{\frac{3}{2}}} \\
Line 508: Line 508:
<u>'''Innere Energie'''</u>
<u>'''Innere Energie'''</u>


<math>\begin{align}
:<math>\begin{align}


& U=\frac{\left( 2s+1 \right)}{2}\left( \frac{V}{{{h}^{3}}} \right)4\pi {{\left( 2mkT \right)}^{\frac{3}{2}}}kT\int_{0}^{\infty }{{}}dy\frac{{{y}^{\frac{3}{2}}}}{\left( {{e}^{y-\eta }}+1 \right)} \\
& U=\frac{\left( 2s+1 \right)}{2}\left( \frac{V}{{{h}^{3}}} \right)4\pi {{\left( 2mkT \right)}^{\frac{3}{2}}}kT\int_{0}^{\infty }{{}}dy\frac{{{y}^{\frac{3}{2}}}}{\left( {{e}^{y-\eta }}+1 \right)} \\
Line 518: Line 518:
Also:
Also:


<math>\begin{align}
:<math>\begin{align}


& U=\frac{\left( 2s+1 \right)}{2}\left( \frac{V}{{{h}^{3}}} \right)4\pi {{\left( 2m \right)}^{\frac{3}{2}}}{{\left( kT \right)}^{\frac{5}{2}}}\left[ \frac{2}{5}{{\left( \frac{\mu }{kT} \right)}^{\frac{5}{2}}}+\frac{{{\pi }^{2}}}{4}{{\left( \frac{\mu }{kT} \right)}^{\frac{1}{2}}} \right] \\
& U=\frac{\left( 2s+1 \right)}{2}\left( \frac{V}{{{h}^{3}}} \right)4\pi {{\left( 2m \right)}^{\frac{3}{2}}}{{\left( kT \right)}^{\frac{5}{2}}}\left[ \frac{2}{5}{{\left( \frac{\mu }{kT} \right)}^{\frac{5}{2}}}+\frac{{{\pi }^{2}}}{4}{{\left( \frac{\mu }{kT} \right)}^{\frac{1}{2}}} \right] \\
Line 530: Line 530:
So dass:
So dass:


<math>\begin{align}
:<math>\begin{align}


& U=\frac{2}{5}\left( \frac{V}{{{h}^{3}}} \right)4\pi \frac{\left( 2s+1 \right)}{2}{{\left( 2m \right)}^{\frac{3}{2}}}{{\left( \mu  \right)}^{\frac{5}{2}}}\left[ 1+\frac{5}{2}\frac{{{\pi }^{2}}}{4}{{\left( \frac{kT}{\mu } \right)}^{2}} \right] \\
& U=\frac{2}{5}\left( \frac{V}{{{h}^{3}}} \right)4\pi \frac{\left( 2s+1 \right)}{2}{{\left( 2m \right)}^{\frac{3}{2}}}{{\left( \mu  \right)}^{\frac{5}{2}}}\left[ 1+\frac{5}{2}\frac{{{\pi }^{2}}}{4}{{\left( \frac{kT}{\mu } \right)}^{2}} \right] \\
Line 540: Line 540:
Mit
Mit


<math>\bar{N}=\frac{2}{3}\frac{\left( 2s+1 \right)}{2}\left( \frac{V}{{{h}^{3}}} \right)4\pi {{\left( 2m{{E}_{F}} \right)}^{\frac{3}{2}}}</math>
:<math>\bar{N}=\frac{2}{3}\frac{\left( 2s+1 \right)}{2}\left( \frac{V}{{{h}^{3}}} \right)4\pi {{\left( 2m{{E}_{F}} \right)}^{\frac{3}{2}}}</math>


folgt:
folgt:


<math>\begin{align}
:<math>\begin{align}


& U\approx \frac{2}{5}\left( \frac{V}{{{h}^{3}}} \right)4\pi \frac{\left( 2s+1 \right)}{2}{{\left( 2m \right)}^{\frac{3}{2}}}{{\left( {{E}_{F}} \right)}^{\frac{5}{2}}}{{\left[ 1-\frac{{{\pi }^{2}}}{12}{{\left( \frac{kT}{{{E}_{F}}} \right)}^{2}} \right]}^{\frac{5}{2}}}\left[ 1+\frac{5}{2}\frac{{{\pi }^{2}}}{4}{{\left( \frac{kT}{{{E}_{F}}} \right)}^{2}} \right] \\
& U\approx \frac{2}{5}\left( \frac{V}{{{h}^{3}}} \right)4\pi \frac{\left( 2s+1 \right)}{2}{{\left( 2m \right)}^{\frac{3}{2}}}{{\left( {{E}_{F}} \right)}^{\frac{5}{2}}}{{\left[ 1-\frac{{{\pi }^{2}}}{12}{{\left( \frac{kT}{{{E}_{F}}} \right)}^{2}} \right]}^{\frac{5}{2}}}\left[ 1+\frac{5}{2}\frac{{{\pi }^{2}}}{4}{{\left( \frac{kT}{{{E}_{F}}} \right)}^{2}} \right] \\
Line 558: Line 558:
Somit haben wir die '''kalorische Zustandsgleichung'''
Somit haben wir die '''kalorische Zustandsgleichung'''


<math>U\approx \frac{3}{5}\bar{N}{{E}_{F}}\left[ 1+5\frac{{{\pi }^{2}}}{12}{{\left( \frac{kT}{{{E}_{F}}} \right)}^{2}} \right]</math>
:<math>U\approx \frac{3}{5}\bar{N}{{E}_{F}}\left[ 1+5\frac{{{\pi }^{2}}}{12}{{\left( \frac{kT}{{{E}_{F}}} \right)}^{2}} \right]</math>


und die '''thermische Zustandsgleichung'''
und die '''thermische Zustandsgleichung'''


<math>pV=\frac{2}{3}U\approx \frac{2}{5}\bar{N}{{E}_{F}}\left[ 1+5\frac{{{\pi }^{2}}}{12}{{\left( \frac{kT}{{{E}_{F}}} \right)}^{2}} \right]</math>
:<math>pV=\frac{2}{3}U\approx \frac{2}{5}\bar{N}{{E}_{F}}\left[ 1+5\frac{{{\pi }^{2}}}{12}{{\left( \frac{kT}{{{E}_{F}}} \right)}^{2}} \right]</math>


Das bedeutet:
Das bedeutet:
Line 572: Line 572:
Beispiel:
Beispiel:


<math>{{E}_{F}}\approx 1eV\Rightarrow T\tilde{\ }{{10}^{4}}K</math>
:<math>{{E}_{F}}\approx 1eV\Rightarrow T\tilde{\ }{{10}^{4}}K</math>


1 eV entspricht 10.000 K !!
1 eV entspricht 10.000 K !!
Line 580: Line 580:
Also eine effektive Abstoßung der Teilchen ! Dies bewirkt für niedrige Temperaturen den enormen Faktor
Also eine effektive Abstoßung der Teilchen ! Dies bewirkt für niedrige Temperaturen den enormen Faktor


<math>\frac{{{E}_{F}}}{kT}</math>
:<math>\frac{{{E}_{F}}}{kT}</math>


, mit dem der Druck gegenüber dem idealen Gas zu multiplizieren ist.
, mit dem der Druck gegenüber dem idealen Gas zu multiplizieren ist.
Line 588: Line 588:
Der Fermidruck ist etwa
Der Fermidruck ist etwa


<math>pV=\frac{2}{3}U\approx \frac{2}{5}\bar{N}{{E}_{F}}5\frac{{{\pi }^{2}}}{12}{{\left( \frac{kT}{{{E}_{F}}} \right)}^{2}}=\frac{{{\pi }^{2}}}{6}\bar{N}kT\left( \frac{kT}{{{E}_{F}}} \right)</math>
:<math>pV=\frac{2}{3}U\approx \frac{2}{5}\bar{N}{{E}_{F}}5\frac{{{\pi }^{2}}}{12}{{\left( \frac{kT}{{{E}_{F}}} \right)}^{2}}=\frac{{{\pi }^{2}}}{6}\bar{N}kT\left( \frac{kT}{{{E}_{F}}} \right)</math>


Also auch größer als beim klassischen idealen Gas, nämlich um den Faktor <math>\left( \frac{kT}{{{E}_{F}}} \right)</math>
Also auch größer als beim klassischen idealen Gas, nämlich um den Faktor <math>\left( \frac{kT}{{{E}_{F}}} \right)</math>
Line 596: Line 596:
<u>'''Spezifische Wärme'''</u>
<u>'''Spezifische Wärme'''</u>


<math>\begin{align}
:<math>\begin{align}


& {{C}_{V}}={{\left( \frac{\partial U}{\partial T} \right)}_{V}}=\frac{{{\pi }^{2}}}{2}\bar{N}k\left( \frac{kT}{{{E}_{F}}} \right) \\
& {{C}_{V}}={{\left( \frac{\partial U}{\partial T} \right)}_{V}}=\frac{{{\pi }^{2}}}{2}\bar{N}k\left( \frac{kT}{{{E}_{F}}} \right) \\
Line 612: Line 612:
ideales Gas:
ideales Gas:


<math>{{c}_{V}}=\frac{3}{2}R</math>
:<math>{{c}_{V}}=\frac{3}{2}R</math>


Physikalsicher Grund:
Physikalsicher Grund:
Line 618: Line 618:
Nur die Teilchen in der " Aufweichungszone"
Nur die Teilchen in der " Aufweichungszone"


<math>{{E}_{F}}-kT<E<{{E}_{F}}+kT</math>
:<math>{{E}_{F}}-kT<E<{{E}_{F}}+kT</math>


tragen  zur spezifischen Wärme bei , da nur sie in freie Zustände thermisch angeregt werden könen :
tragen  zur spezifischen Wärme bei , da nur sie in freie Zustände thermisch angeregt werden könen :
Line 624: Line 624:
Zahl:
Zahl:


<math>\Delta N\tilde{\ }\bar{N}\frac{kT}{{{E}_{F}}}</math>
:<math>\Delta N\tilde{\ }\bar{N}\frac{kT}{{{E}_{F}}}</math>


jedes hat Energie ~ kT
jedes hat Energie ~ kT


<math>\begin{align}
:<math>\begin{align}


& \Rightarrow \Delta U\tilde{\ }\bar{N}\frac{{{\left( kT \right)}^{2}}}{{{E}_{F}}} \\
& \Rightarrow \Delta U\tilde{\ }\bar{N}\frac{{{\left( kT \right)}^{2}}}{{{E}_{F}}} \\
Line 651: Line 651:
'''Voraussetzung:'''
'''Voraussetzung:'''


<math>\xi ={{e}^{\frac{\mu }{kT}}}<<1</math>
:<math>\xi ={{e}^{\frac{\mu }{kT}}}<<1</math>


das heißt:
das heißt:


<math>\begin{align}
:<math>\begin{align}


& \mu <0 \\
& \mu <0 \\
Line 667: Line 667:
:
:


<math>\begin{align}
:<math>\begin{align}


& {{F}_{s}}\left( \eta  \right)=\frac{1}{\Gamma \left( s+1 \right)}\int_{0}^{\infty }{{}}dy\frac{{{y}^{s}}}{{{e}^{y-\eta }}+1} \\
& {{F}_{s}}\left( \eta  \right)=\frac{1}{\Gamma \left( s+1 \right)}\int_{0}^{\infty }{{}}dy\frac{{{y}^{s}}}{{{e}^{y-\eta }}+1} \\
Line 683: Line 683:
'''Dabei ist'''
'''Dabei ist'''


<math>{{F}_{s}}\left( \eta  \right)={{e}^{\frac{\mu }{kT}}}</math>
:<math>{{F}_{s}}\left( \eta  \right)={{e}^{\frac{\mu }{kT}}}</math>


das Boltzman- Limit mit der Quantenkorrektur  <math>-{{e}^{2\frac{\mu }{kT}}}\frac{1}{{{2}^{s+1}}}</math>
das Boltzman- Limit mit der Quantenkorrektur  <math>-{{e}^{2\frac{\mu }{kT}}}\frac{1}{{{2}^{s+1}}}</math>
Line 689: Line 689:
Also:
Also:


<math>\bar{N}=\frac{\left( 2s+1 \right)}{2}\left( \frac{V}{{{h}^{3}}} \right)4\pi {{\left( 2mkT \right)}^{\frac{3}{2}}}\frac{\sqrt{\pi }}{2}{{F}_{\frac{1}{2}}}\left( \eta  \right)=V{{N}_{C}}{{F}_{\frac{1}{2}}}\left( \frac{\mu }{kT} \right)</math>
:<math>\bar{N}=\frac{\left( 2s+1 \right)}{2}\left( \frac{V}{{{h}^{3}}} \right)4\pi {{\left( 2mkT \right)}^{\frac{3}{2}}}\frac{\sqrt{\pi }}{2}{{F}_{\frac{1}{2}}}\left( \eta  \right)=V{{N}_{C}}{{F}_{\frac{1}{2}}}\left( \frac{\mu }{kT} \right)</math>


mit der Entartungskonzentration
mit der Entartungskonzentration


<math>{{N}_{C}}:=\left( 2s+1 \right){{\left( \frac{2\pi mkT}{{{h}^{2}}} \right)}^{\frac{3}{2}}}</math>
:<math>{{N}_{C}}:=\left( 2s+1 \right){{\left( \frac{2\pi mkT}{{{h}^{2}}} \right)}^{\frac{3}{2}}}</math>


Also genähert:
Also genähert:


<math>\bar{N}=V{{N}_{C}}{{F}_{\frac{1}{2}}}\left( \frac{\mu }{kT} \right)\approx V{{N}_{C}}{{e}^{\frac{\mu }{kT}}}\left[ 1-{{e}^{\frac{\mu }{kT}}}\frac{1}{{{2}^{\frac{3}{2}}}} \right]</math>
:<math>\bar{N}=V{{N}_{C}}{{F}_{\frac{1}{2}}}\left( \frac{\mu }{kT} \right)\approx V{{N}_{C}}{{e}^{\frac{\mu }{kT}}}\left[ 1-{{e}^{\frac{\mu }{kT}}}\frac{1}{{{2}^{\frac{3}{2}}}} \right]</math>


Bei vollständiger Nichtentartung:
Bei vollständiger Nichtentartung:


<math>\begin{align}
:<math>\begin{align}


& \frac{{\bar{N}}}{V}\approx {{N}_{C}}{{e}^{\frac{\mu }{kT}}} \\
& \frac{{\bar{N}}}{V}\approx {{N}_{C}}{{e}^{\frac{\mu }{kT}}} \\
Line 713: Line 713:
Die klassische Maxwell- Boltzmann- Verteilung ( vergl. S. 101)
Die klassische Maxwell- Boltzmann- Verteilung ( vergl. S. 101)


<math>\begin{align}
:<math>\begin{align}


& U=\frac{\left( 2s+1 \right)}{2}\left( \frac{V}{{{h}^{3}}} \right)4\pi {{\left( 2mkT \right)}^{\frac{3}{2}}}kT\int_{0}^{\infty }{{}}dy\frac{{{y}^{\frac{3}{2}}}}{\left( {{e}^{y-\eta }}+1 \right)}=\frac{\left( 2s+1 \right)}{2}\left( \frac{V}{{{h}^{3}}} \right)4\pi {{\left( 2mkT \right)}^{\frac{3}{2}}}kT\frac{3\sqrt{\pi }}{4}{{F}_{\frac{3}{2}}}\left( \frac{\mu }{kT} \right) \\
& U=\frac{\left( 2s+1 \right)}{2}\left( \frac{V}{{{h}^{3}}} \right)4\pi {{\left( 2mkT \right)}^{\frac{3}{2}}}kT\int_{0}^{\infty }{{}}dy\frac{{{y}^{\frac{3}{2}}}}{\left( {{e}^{y-\eta }}+1 \right)}=\frac{\left( 2s+1 \right)}{2}\left( \frac{V}{{{h}^{3}}} \right)4\pi {{\left( 2mkT \right)}^{\frac{3}{2}}}kT\frac{3\sqrt{\pi }}{4}{{F}_{\frac{3}{2}}}\left( \frac{\mu }{kT} \right) \\
Line 728: Line 728:


# Näherung:
# Näherung:
<math>\bar{N}=V{{N}_{C}}\xi </math>
:<math>\bar{N}=V{{N}_{C}}\xi </math>


# Näherung
# Näherung
<math>\begin{align}
:<math>\begin{align}


& \bar{N}=V{{N}_{C}}\xi \left[ 1-{{2}^{-\frac{3}{2}}}\frac{{\bar{N}}}{V{{N}_{C}}} \right] \\
& \bar{N}=V{{N}_{C}}\xi \left[ 1-{{2}^{-\frac{3}{2}}}\frac{{\bar{N}}}{V{{N}_{C}}} \right] \\
Line 741: Line 741:
\end{align}</math>
\end{align}</math>


<math>U\approx \frac{3}{2}kT\bar{N}\left[ 1+{{2}^{-\frac{5}{2}}}\frac{{\bar{N}}}{V{{N}_{C}}(T)} \right]</math>
:<math>U\approx \frac{3}{2}kT\bar{N}\left[ 1+{{2}^{-\frac{5}{2}}}\frac{{\bar{N}}}{V{{N}_{C}}(T)} \right]</math>


Dabei wurden alle Terme der Ordnung <math>{{\left( \frac{{\bar{N}}}{V{{N}_{C}}(T)} \right)}^{2}}</math>
Dabei wurden alle Terme der Ordnung <math>{{\left( \frac{{\bar{N}}}{V{{N}_{C}}(T)} \right)}^{2}}</math>
Line 751: Line 751:
kalorische Zustandsgleichung
kalorische Zustandsgleichung


<math>U\approx \frac{3}{2}kT\bar{N}\left[ 1+{{2}^{-\frac{5}{2}}}\frac{{\bar{N}}}{V{{N}_{C}}(T)} \right]</math>
:<math>U\approx \frac{3}{2}kT\bar{N}\left[ 1+{{2}^{-\frac{5}{2}}}\frac{{\bar{N}}}{V{{N}_{C}}(T)} \right]</math>


mit der Quantenkorrektur <math>O\left( \frac{{\bar{N}}}{V{{N}_{C}}(T)} \right)</math>
mit der Quantenkorrektur <math>O\left( \frac{{\bar{N}}}{V{{N}_{C}}(T)} \right)</math>
Line 759: Line 759:
'''thermische Zustandsgleichung'''
'''thermische Zustandsgleichung'''


<math>pV=\frac{2}{3}U\approx kT\bar{N}\left[ 1+{{2}^{-\frac{5}{2}}}\frac{{\bar{N}}}{V{{N}_{C}}(T)} \right]</math>
:<math>pV=\frac{2}{3}U\approx kT\bar{N}\left[ 1+{{2}^{-\frac{5}{2}}}\frac{{\bar{N}}}{V{{N}_{C}}(T)} \right]</math>


Also:
Also:


<math>pv\approx RT\left[ 1+{{2}^{-\frac{5}{2}}}\frac{{{N}_{A}}}{v{{N}_{C}}(T)} \right]</math>
:<math>pv\approx RT\left[ 1+{{2}^{-\frac{5}{2}}}\frac{{{N}_{A}}}{v{{N}_{C}}(T)} \right]</math>


Dabei ist
Dabei ist


<math>pv\approx RT</math>
:<math>pv\approx RT</math>


die Zustandsgleichung des klassischen idealen Gases und <math>RT{{2}^{-\frac{5}{2}}}\frac{{{N}_{A}}}{v{{N}_{C}}(T)}</math>
die Zustandsgleichung des klassischen idealen Gases und <math>RT{{2}^{-\frac{5}{2}}}\frac{{{N}_{A}}}{v{{N}_{C}}(T)}</math>
Line 781: Line 781:
E= kT also, schreibt man:
E= kT also, schreibt man:


<math>{{N}_{C}}=\frac{2s+1}{{{\lambda }^{3}}}</math>
:<math>{{N}_{C}}=\frac{2s+1}{{{\lambda }^{3}}}</math>


[["category":"uncategorized"]]
[["category":"uncategorized"]]

Revision as of 15:32, 12 September 2010


{{#set:Urheber=Prof. Dr. E. Schöll, PhD|Inhaltstyp=Script|Kapitel=5|Abschnitt=2}} Kategorie:Thermodynamik __SHOWFACTBOX__


  1. Teilchen- Zustände sind die Eigenzustände zur 1- Teilchen- Energie Ei

Großkanonischer Statistischer Operator:

ρ^=Y1exp(β(H^μN^))

Die Wahrscheinlichkeit, das System in einem bestimmten Zustand zu finden ist gleich dem Erwartungswert des statistischen Operators in diesem Zustand:

Also für den Vielteilchenzustand |α

Eαges.=j=1lEjNj

mit der Einteilchenenergie Ej und den Besetzungszahlen Nj

Diese Wahrscheinlichkeit ist:

Pα=α|ρ^|α=Y1α|exp(β(H^μN^))|α=Y1exp(βj=1l(NjEjμNj))

Dies ist ein Ergebnis für einen Zustand !

Die Großkanonsiche Zustandsumme Y gewinnt man, indem man über alle möglichen Vielteilchenzustände noch summiert, also:

Y=N1...Nlexp(βj=1l(NjEjμNj))=j=1l(Njexp(β(NjEjμNj)))

Jetzt muss bei der Auswertung die unterschiedliche Teilchenart berücksichtigt werden, nämlich in der Summation über Nj. Handelt es sich um Fermionen, so wird nur bis 1 summiert. Handelt es sich um Bosonen, so wird bis unendlich summiert !

Fermionen

Y=N1...Nl=01exp(βj=1l(NjEjμNj))=j=1l(Nj=01exp(β(NjEjμNj)))=j=1l(Nj=01tjNj)tj:=exp(β(Ejμ))Y=j=1l(1+tj)=j=1lYj

Also folgt:

P(N1,...,Nl)=j=1ltjNj(1+tj)=j=1lP(Nj)

separiert !!

Dies als Gesamtwahrscheinlichkeit, das System mit der Besetzung (N1,...,Nl)

zu finden !

Mittlere Besetzungszahl im Einteilchenzustand Ej

Aus P(Nj)=exp(ΨjβEjαNj)

mit

Ψj=lnYj=ln(1+tj)α=βμ

folgt:

Nj=Ψjα=1βμlnYj=tj1+tj=1tj1+1

Also:

Nj=1exp(EjμkT)+1

Die Fermi- Verteilung !

Dies folgt auch explizit aus

Nj=N1=01N2=01...{Njt1N11+t1...tjNj1+tj....}=Nj=01Nj.tjNj1+tj=0tj0+1tj1+tj=tj1+tj

speziell folgt dies auch aus

Nj=p(Nj=1)=tj1+tj

aber nur wegen Nj = 0,1

  • 2 Möglichkeiten ! -> Mittelwert liegt in der Mitte


Für T -> 0:

NjΘ(μEj)

( Stufenfunktion), sogenannter Quantenlimes !

T>0:

Aufweichungszone bei Ej~μ

der Breite kT

Ejμ>>kT

( sehr hohe Energien)

->

Nj~exp(EjμkT)
  • die Fermiverteilung nähert sich der Boltzmann- Verteilung an ( klassischer Grenzfall !!)
  • keine Berücksichtigung des Pauli- Prinzips mehr !

Nj:=1/(1+exp((Ej-mue)/Boltz));

1

Nj := ---------------------

1 + exp(1/5 Ej - 1/5)

> Boltz:=5;

Boltz := 5

> mue:=1;

mue := 1

  • plot(Nj,Ej=0..50);

Beispiel einer Maxwell- Boltzmann- Verteilung sehr hoher Energien !

Gesamte mittlere Teilchenzahl

N¯=j=1lNj

thermische Zustandsgleichung

pV=kTlnY=kTj=1llnYi=kTj=1lln(1+exp(β(μEj)))

Energie und Zustandsdichte freier Teilchen

Energie- Eigenwerte:

Ej=k¯222m

Das System sei in einem Würfel V = L³ eingeschlossen !

Zyklische Randbedingungen ( Born - v. Karman):

Ψj(r¯)=1Veik¯r¯kaL=2πnana=±1,±2,±3....a=1,2,3

Ein Zustand im k- Raum beansprucht also das Volumen:

(Δk)3=(2πL)3Δn1Δn2Δn3=(2πL)3=(8π3V)

Dabei wurde jedoch kein Spin berücksichtigt !

Thermodynamischer limes ( großes Volumen V):

Übergang zum Quasikontinuum:

j(V8π3)d3kp¯=k¯j(V8π33)d3p=(Vh3)d3p

In Übereinstimmung mit Kapitel 4.1, Seite 100

Spinentartung:

(2s+1)- fache Entartung !

Kugelsymmetrisches Integral:

j(V8π33)d3p=(Vh3)d3p=(2s+1)(Vh3)4πp2dp

Großkanonische Zustandssumme:

lnY=jln(1+ξeβEj)ξ:=eβμ

sogenannte Fugizität !

lnY=jln(1+ξeβEj)(2s+1)(Vh3)4π0p2dpln(1+ξeβEj)=(2s+1)(Vh3)4π0p2dpln(1+ξeβp22m)

Partielle Integration:

lnY(2s+1)(Vh3)4π0p2dpln(1+ξeβp22m)=(2s+1)(Vh3)4π[(p33ln(1+ξeβp22m))|00p33βpmξeβp22m(1+ξeβp22m)dp](p33ln(1+ξeβp22m))|0=0lnY=(2s+1)(Vh3)4π0p33βpmξeβp22m(1+ξeβp22m)dp=23(2s+1)(Vh3)4π0dpp2βp22m(1ξeβp22m+1)=23β(2s+1)(Vh3)4π0dpp2N(p)p22m

Mit der Fermi- Verteilung N(p)

, also:

lnY=23β(2s+1)(Vh3)4π0dpp2N(p)E(p)

Diskret:

lnY=23βj=1lNjEj=23βUU=Eges.

Somit haben wir die thermische Zustands-Gleichung

pV=kTlnY=23U=23Eges.

Bemerkungen

Dies gilt auch für ein klassisches ideales Gas !

Klassisch:

pV=N¯kTU=32N¯kTpV=23U

Später werden wir sehen: Das gilt auch für Bose- Verteilung !!

Also unabhängig von der speziellen Statistik !

Entartetes Fermi- Gas

Klassischer Grenzfall der Fermi- Verteilung:

N(p)=1(1ξeβp22m+1)ξeβp22m

( Maxwell- Boltzmann- Verteilung)

für ξ=eμkT<<1μ<0

( stark verdünnt)

  • klassischer Limes !
  • Merke positives chemisches Potenzial ist ein QM- Grenzfall !!

Nichtklassischer Grenzfall ( "Fermi- Entartung ")

Für ξ>>1

( Grenzfall hoher Dichte !)


Gesamte Teilchenzahl:

N¯=(2s+1)(Vh3)4π0dpp21(eβ(p22mμ)+1)

Innere Energie:

U=(2s+1)(Vh3)4π0dpp2p22m(eβ(p22mμ)+1)

Substitution

p22mkT=ypdp=mkTdyμkT=η=αN¯=(2s+1)2(Vh3)4π(2mkT)320dyy12(eyη+1)U=(2s+1)2(Vh3)4π(2mkT)32kT0dyy32(eyη+1)

Definition: Fermi- Dirac- Integral der Ordnung s:

Fs(η):=1Γ(s+1)0dyys(eyη+1)s>0

Entwicklung für

η>>1ξ>>1

, also Entartung:

Γ(s+1)Fs(η):=0dyys(eyη+1)=1s+10dyddy(ys+1)1(eyη+1)=1s+1[(ys+1)1(eyη+1)]|0+1s+10dyys+1eyη(eyη+1)21s+1[(ys+1)1(eyη+1)]|0=0

weitere Substitution:

x=yηΓ(s+1)Fs(η)=1s+10dyys+1eyη(eyη+1)2=1s+1ηdx(x+η)s+1ex(ex+1)2η>>1

Somit kann man die Grenzen erweitern, da η>>1

x=yηΓ(s+1)Fs(η)=1s+1ηdx(x+η)s+1ex(ex+1)21s+1dx(x+η)s+1ex(ex+1)2+O(eη)O(eη)<<1

Dies kann man durch Entwicklung von

(x+η)s+1

lösen:

(x+η)s+1(η)s+1+(s+1)(η)sx+s(s+1)2(η)s1x2+....

Somit:

Γ(s+1)Fs(η)=1s+1ηdx(x+η)s+1ex(ex+1)21s+1dx(x+η)s+1ex(ex+1)2+O(eη)1s+1dx(η)s+1ex(ex+1)2+dx(η)sxex(ex+1)2+s2dx(η)s1x2ex(ex+1)2=(η)s+1s+1dxex(ex+1)2+(η)sdxxex(ex+1)2+s2(η)s1dxx2ex(ex+1)2

Für die Terme gilt im Einzelnen:

dxex(ex+1)2=[1(ex+1)]=1dxxex(ex+1)2=0daIntegrandungeradedxx2ex(ex+1)2:=I

Bleibt Integral I zu lösen:

I=dxx2ex(ex+1)2=20dxx2ex(ex+1)2=2[x21(ex+1)]0+40dxx(ex+1)[x21(ex+1)]0=00dxx(ex+1)=π212I=π23

Somit ergibt sich das Fermi- Dirac- Integral gemäß

Γ(s+1)Fs(η)(η)s+1s+1+s2(η)s1π23Γ(s+1)Fs(η)=(η)s+1s+1+s2(η)s1π23+O((η)s3)Fs(η)=1Γ(s+1)[(η)s+1s+1+sπ26(η)s1+O((η)s3)]

Speziell:

F12(η)2π[(η)3232+π212(η)12]F32(η)43π[(η)5252+π24(η)12]

Also:

N¯=(2s+1)2(Vh3)4π(2mkT)320dyy12(eyη+1)=(2s+1)2(Vh3)4π(2mkT)32[23(μkT)32+π212(μkT)12]N¯=23(2s+1)2(Vh3)4π(2mμ)32[1+π28(kTμ)2]

Definition: Fermi- Energie:

EF:=μ(T=0,N¯,V)

Bei T= 0 Kelvin sind die Zustände mit E<EF

voll besetzt, die anderen leer !

Wir können dann μ(T=0,N¯,V)

durch EF

und N¯

eliminieren:

T->0

N¯=23(2s+1)2(Vh3)4π(2mμ)32[1+π28(kTμ)2]=23(2s+1)2(Vh3)4π(2mEF)32

Für größere Temperaturen T>0 wird nun

N¯=23(2s+1)2(Vh3)4π(2mEF)32

in niedrigster Ordnung in kTEF

entwickelt und diese Entwicklung dann eingesetzt in die Formel

N¯=23(2s+1)2(Vh3)4π(2mμ)32[1+π28(kTμ)2]=23(2s+1)2(Vh3)4π(2mEF)32(μ)32[1+π28(kTμ)2](EF)32μEF[1+π28(kTμ)2]23

Jetzt wird in niedrigster Ordnung in kTEF

entwickelt:

Das heißt, für kT=1 zeigt µ über Ef etwa folgenden verlauf:

die Kurve wird für höhere Temperaturen immer weiter auseinandergedehnt !

Innere Energie

U=(2s+1)2(Vh3)4π(2mkT)32kT0dyy32(eyη+1)F32(η)43π[(η)5252+π24(η)12]

Also:

U=(2s+1)2(Vh3)4π(2m)32(kT)52[25(μkT)52+π24(μkT)12]=25(Vh3)4π(2s+1)2(2m)32(μ)52[1+52π24(kTμ)2]

Verwende:

So dass:

U=25(Vh3)4π(2s+1)2(2m)32(μ)52[1+52π24(kTμ)2]25(Vh3)4π(2s+1)2(2m)32(EF)52[1π212(kTEF)2]52[1+52π24(kTEF)2]

Mit

N¯=23(2s+1)2(Vh3)4π(2mEF)32

folgt:

U25(Vh3)4π(2s+1)2(2m)32(EF)52[1π212(kTEF)2]52[1+52π24(kTEF)2]25(Vh3)4π(2s+1)2(2m)32(EF)5235N¯EF[1π212(kTEF)2]52[1+52π24(kTEF)2]1+5π212(kTEF)2U35N¯EF[1+5π212(kTEF)2]

Somit haben wir die kalorische Zustandsgleichung

U35N¯EF[1+5π212(kTEF)2]

und die thermische Zustandsgleichung

pV=23U25N¯EF[1+5π212(kTEF)2]

Das bedeutet:

Der Druck des fermigases ist um einen Faktor EFkT

größer als in klassischen idealen Gasen

Beispiel:

EF1eVT~104K

1 eV entspricht 10.000 K !!

Grund ist das Pauli- Prinzip !!

Also eine effektive Abstoßung der Teilchen ! Dies bewirkt für niedrige Temperaturen den enormen Faktor

EFkT

, mit dem der Druck gegenüber dem idealen Gas zu multiplizieren ist.

Für sehr hohe Temperaturen überwiegt dann der hintere teil, und es gilt:

Der Fermidruck ist etwa

pV=23U25N¯EF5π212(kTEF)2=π26N¯kT(kTEF)

Also auch größer als beim klassischen idealen Gas, nämlich um den Faktor (kTEF)

!

Spezifische Wärme

CV=(UT)V=π22N¯k(kTEF)cV=π22R(kTEF)~T

Die Wärmekapazität ist sage und schreibe um den Faktor (kTEF)

kleiner als bei idealen gasen.

Bei T ~ 300 K ist dies 1/ 40 !

ideales Gas:

cV=32R

Physikalsicher Grund:

Nur die Teilchen in der " Aufweichungszone"

EFkT<E<EF+kT

tragen zur spezifischen Wärme bei , da nur sie in freie Zustände thermisch angeregt werden könen :

Zahl:

ΔN~N¯kTEF

jedes hat Energie ~ kT

ΔU~N¯(kT)2EFCv~N¯k(kT)EF


Beispiele für entartete Fermigase

  • Elektronen in Metallen -> hohe Dichten !
  • Elektronen in Halbleitern, bei sehr tiefen Temperaturen oder hoher Dotierung!

Nichtenatartetes fermigas

verdünntes, nichtrelativistisches Quantengas !

z.B. Elektronen in Halbleitern im Normalbereich !

Voraussetzung:

ξ=eμkT<<1

das heißt:

μ<0η=μkT<0

Entwicklung der Fermi- Dirac- Integrale nach Potenzen von ξ=eμkT<<1

Fs(η)=1Γ(s+1)0dyyseyη+1=1Γ(s+1)0dyysξey1+ξey1Γ(s+1)[ξ0dyyseyξ20dyyse2y+....]0dyysey=Γ(s+1)0dyyse2y=12s+10dzzsez=12s+1Γ(s+1)Fs(η)[ξξ212s+1+....][ξξ212s+1]=eμkT[1eμkT12s+1]

Dabei ist

Fs(η)=eμkT

das Boltzman- Limit mit der Quantenkorrektur e2μkT12s+1

Also:

N¯=(2s+1)2(Vh3)4π(2mkT)32π2F12(η)=VNCF12(μkT)

mit der Entartungskonzentration

NC:=(2s+1)(2πmkTh2)32

Also genähert:

N¯=VNCF12(μkT)VNCeμkT[1eμkT1232]

Bei vollständiger Nichtentartung:

N¯VNCeμkTeμkT<<1N¯V<<NC

Die klassische Maxwell- Boltzmann- Verteilung ( vergl. S. 101)

U=(2s+1)2(Vh3)4π(2mkT)32kT0dyy32(eyη+1)=(2s+1)2(Vh3)4π(2mkT)32kT3π4F32(μkT)U=VNC32kTF32(μkT)UVNC32kTeμkT[1eμkT1252]

Elimination von μ

durch N¯=VNCF12(μkT)VNCξ[1ξ232]

  1. Näherung:
N¯=VNCξ
  1. Näherung
N¯=VNCξ[1232N¯VNC]ξ=eμkTN¯VNC[1+232N¯VNC]UVNC32kTeμkT[1eμkT1252]32kTN¯[1+232N¯VNC][11252N¯VNC]
U32kTN¯[1+252N¯VNC(T)]

Dabei wurden alle Terme der Ordnung (N¯VNC(T))2

weggenähert !

Also:

kalorische Zustandsgleichung

U32kTN¯[1+252N¯VNC(T)]

mit der Quantenkorrektur O(N¯VNC(T))

32kTN¯252N¯VNC(T)

thermische Zustandsgleichung

pV=23UkTN¯[1+252N¯VNC(T)]

Also:

pvRT[1+252NAvNC(T)]

Dabei ist

pvRT

die Zustandsgleichung des klassischen idealen Gases und RT252NAvNC(T)

eine Erhöhung des klassischen Drucks durch die Fermi- Abstoßung !

Nebenbemerkung:

Mit der thermischen Wellenlänge λ:=(h22πmkT)12

entsprechend der de Broglie- Wellenlänge für k222m~kTλ=(h22mkT)12

E= kT also, schreibt man:

NC=2s+1λ3

"category":"uncategorized"