Quantenmechanische Gleichgewichtsverteilungen: Difference between revisions
Line 52: | Line 52: | ||
* {{FB|Projektionsoperator}} auf <math>\left| \alpha \right\rangle </math> | * {{FB|Projektionsoperator}} auf <math>\left| \alpha \right\rangle </math> | ||
==Quantenmechanische Erwartungswerte einer Messung== | |||
===reine Zustände== | |||
<math>\left| \Psi \right\rangle </math> heißt {{FB|reiner Zustand} (Vektorzustand) | |||
Wahrscheinlichkeit für das Resultat <math>\left| \alpha \right\rangle </math> im Zustand <math>\left| \Psi \right\rangle </math> (Maximalmessung): | |||
Wahrscheinlichkeit für das Resultat <math>\left| \alpha \right\rangle </math> | |||
im Zustand <math>\left| \Psi \right\rangle </math> | |||
( Maximalmessung): | |||
<math>{{\left| \left\langle \alpha | \Psi \right\rangle \right|}^{2}}=\left\langle \Psi | \alpha \right\rangle \left\langle \alpha | \Psi \right\rangle =\left\langle \Psi \right|{{\hat{P}}_{\alpha }}\left| \Psi \right\rangle ={{P}_{\alpha }}</math> | :<math>{{\left| \left\langle \alpha | \Psi \right\rangle \right|}^{2}}=\left\langle \Psi | \alpha \right\rangle \left\langle \alpha | \Psi \right\rangle =\left\langle \Psi \right|{{\hat{P}}_{\alpha }}\left| \Psi \right\rangle ={{P}_{\alpha }}</math> | ||
Erwartungswert von <math>\hat{M}</math> | Erwartungswert von <math>\hat{M}</math> im Zustand <math>\left| \Psi \right\rangle </math>: | ||
im Zustand <math>\left| \Psi \right\rangle </math> | :<math>\left\langle {\hat{M}} \right\rangle =\left\langle \Psi \right|\hat{M}\left| \Psi \right\rangle =\sum\limits_{\alpha }^{{}}{{}}\left\langle \Psi \right|\hat{M}\left| \alpha \right\rangle \left\langle \alpha | \Psi \right\rangle =\sum\limits_{\alpha ,\alpha \acute{\ }}^{{}}{{}}\left\langle \Psi | \alpha \acute{\ } \right\rangle \left\langle \alpha | \Psi \right\rangle \left\langle \alpha \acute{\ } \right|\hat{M}\left| \alpha \right\rangle </math> | ||
: | |||
<math>\left\langle {\hat{M}} \right\rangle =\left\langle \Psi \right|\hat{M}\left| \Psi \right\rangle =\sum\limits_{\alpha }^{{}}{{}}\left\langle \Psi \right|\hat{M}\left| \alpha \right\rangle \left\langle \alpha | \Psi \right\rangle =\sum\limits_{\alpha ,\alpha \acute{\ }}^{{}}{{}}\left\langle \Psi | \alpha \acute{\ } \right\rangle \left\langle \alpha | \Psi \right\rangle \left\langle \alpha \acute{\ } \right|\hat{M}\left| \alpha \right\rangle </math> | |||
Falls <math>\left| \alpha \right\rangle </math> | Falls <math>\left| \alpha \right\rangle </math> Eigenbasis zu <math>\hat{M}</math>: | ||
Eigenbasis zu <math>\hat{M}</math> | :<math>\begin{align} | ||
: | |||
<math>\begin{align} | |||
& \left\langle {\hat{M}} \right\rangle =\left\langle \Psi \right|\hat{M}\left| \Psi \right\rangle =\sum\limits_{\alpha }^{{}}{{}}\left\langle \Psi | \alpha \right\rangle \left\langle \alpha | \Psi \right\rangle {{M}_{\alpha }}= \\ | & \left\langle {\hat{M}} \right\rangle =\left\langle \Psi \right|\hat{M}\left| \Psi \right\rangle =\sum\limits_{\alpha }^{{}}{{}}\left\langle \Psi | \alpha \right\rangle \left\langle \alpha | \Psi \right\rangle {{M}_{\alpha }}= \\ | ||
& =\sum\limits_{\alpha }^{{}}{{}}{{P}_{\alpha }}{{M}_{\alpha }} \\ | & =\sum\limits_{\alpha }^{{}}{{}}{{P}_{\alpha }}{{M}_{\alpha }} \\ | ||
\end{align}</math> | \end{align}</math> | ||
Schreibweise mit Projektor auf Zustand <math>\left| \Psi \right\rangle </math> | Schreibweise mit Projektor auf Zustand <math>\left| \Psi \right\rangle </math>: | ||
: | :<math>\begin{align} | ||
<math>\begin{align} | |||
& \left\langle {\hat{M}} \right\rangle =\left\langle \Psi \right|\hat{M}\left| \Psi \right\rangle =\sum\limits_{\alpha }^{{}}{{}}\left\langle \alpha | \Psi \right\rangle \left\langle \Psi \right|\hat{M}\left| \alpha \right\rangle =\sum\limits_{\alpha }^{{}}{{}}\left\langle \alpha \right|{{{\hat{P}}}_{\Psi }}\hat{M}\left| \alpha \right\rangle :=tr\left( {{{\hat{P}}}_{\Psi }}\hat{M} \right)=tr\left( \hat{M}{{{\hat{P}}}_{\Psi }} \right) \\ | & \left\langle {\hat{M}} \right\rangle =\left\langle \Psi \right|\hat{M}\left| \Psi \right\rangle =\sum\limits_{\alpha }^{{}}{{}}\left\langle \alpha | \Psi \right\rangle \left\langle \Psi \right|\hat{M}\left| \alpha \right\rangle =\sum\limits_{\alpha }^{{}}{{}}\left\langle \alpha \right|{{{\hat{P}}}_{\Psi }}\hat{M}\left| \alpha \right\rangle :=tr\left( {{{\hat{P}}}_{\Psi }}\hat{M} \right)=tr\left( \hat{M}{{{\hat{P}}}_{\Psi }} \right) \\ | ||
& tr\hat{X}:=\sum\limits_{\alpha }^{{}}{{}}\left\langle \alpha \right|\hat{X}\left| \alpha \right\rangle \\ | & tr\hat{X}:=\sum\limits_{\alpha }^{{}}{{}}\left\langle \alpha \right|\hat{X}\left| \alpha \right\rangle \\ | ||
Line 93: | Line 86: | ||
Also gleich in Basis Alpha wie Beta ! | Also gleich in Basis Alpha wie Beta ! | ||
===Quantenmechanisches Gemisch=== | |||
Gemengezustand: Vergl. Fick: Grundlagen der Quantentheorie, Kapitel 7 | Gemengezustand: Vergl. Fick: Grundlagen der Quantentheorie, Kapitel 7 |
Revision as of 16:21, 11 September 2010
65px|Kein GFDL | Der Artikel Quantenmechanische Gleichgewichtsverteilungen basiert auf der Vorlesungsmitschrift von Franz- Josef Schmitt des 2.Kapitels (Abschnitt 3) der Thermodynamikvorlesung von Prof. Dr. E. Schöll, PhD. |
|}}
{{#set:Urheber=Prof. Dr. E. Schöll, PhD|Inhaltstyp=Script|Kapitel=2|Abschnitt=3}} Kategorie:Thermodynamik __SHOWFACTBOX__
Quantenmechanische Gleichgewichtsverteilungen
Mikrozustände:
Klassischer Zustandsraum mit -> quantenmechanischer Zustandsraum ( Hilbertraum)
Basis (vollständiges ONS): mit
Ortsdarstellung der Wellenfunktion
Mikroobservable
Klassische Phasenraumfunktion M: ( Ms kommutieren):
--> quantenmechanische Observablen ( Hermitesch): kommutieren im Allgemeinen nicht !
Quantisierung = Aufstellung von Vertauschungsrelationen !
Maximalmessung: Messung eines vollständigen Satzes vertauschbarer Observablen |
{{#set:Definition=Maximalmessung|Index=Maximalmessung}}
Spektraldarstellung{{#set:Fachbegriff=Spektraldarstellung|Index=Spektraldarstellung}}:
denn:
Projektionsoperator auf den Zustand Alpha: Observable: Ist das System im Zustand
- Projektionsoperator{{#set:Fachbegriff=Projektionsoperator|Index=Projektionsoperator}} auf
Quantenmechanische Erwartungswerte einer Messung
=reine Zustände
heißt {{FB|reiner Zustand} (Vektorzustand)
Wahrscheinlichkeit für das Resultat im Zustand (Maximalmessung):
Erwartungswert von im Zustand :
Schreibweise mit Projektor auf Zustand :
in einer völlig beliebigen Basis
Satz: Die Spur ist invariant bei Basiswechsel:
Also gleich in Basis Alpha wie Beta !
Quantenmechanisches Gemisch
Gemengezustand: Vergl. Fick: Grundlagen der Quantentheorie, Kapitel 7
- QM- Wahrscheinlichkeitsaussagen ( prinzipielle Unschärfe)
- Zusätzliche Statistik
- Unvollständige Information über den Mikrozustand des Systems ( z.B., nach einer vollständigen Messung im Zustand
- wird vom Messergebnis nicht Kenntnis genommen !
Basis der Mikrozustände : -> sample set der Zufallsereignisse Wahrscheinlichkeitsverteilung
Erwartungswert, qm- Erwartungswert im Zustand
mit dem statistischen Operator ( Dichtematrix ):
Überlagerung der Projektoren mit dem statistischen Gewicht !
Summary
Bemerkung:
Reine Zustände -> kohärente Überlagerung von Wahrscheinlichkeitsamplituden:
mit den quantenmechanischen Phasen
Gemisch: Inkohärente Überlagerung von reinen Zuständen:
- keine quantenmechanischen Interferenzterme !
- -> Die statistischen Operatoren nur der reinen Zustände können als Summe über Projektoren geschrieben werden !
Normierung des statistischen Operators:
Also: für reine Zustände ist der statistische Operator ein Projektor auf diesen reinen Zustand !
einheitliche Darstellung !! Nebenbemerkung
Mathematische Formulierung des Zustandsbegriffs ( klassisch + quantenmechanisch)
Zustand = normiertes, positives lineares Funktional auf der Algebra der Observablen:
reiner Zustand = Extremalpunkt der konvexen menge der Zustände !
Informationsmaße
Nebenbemerkung: ist ( wie alle Operatorfunktionen) definiert durch die Spektraldarstellung:
Eigenschaften wie im klassischen Fall:
Verallgemeinerter kanonischer statistischer Operator
Vorurteilsfreie Schätzung unter Nebenbedingungen
Voraussetzung: Die reinen Zustände haben die gleiche a-priori- Wahrscheinlichkeit ist durch Maximalmessung gegeben !
Nebenbemerkung: Die müssen nicht miteinander kommutieren,
damit sie Erhaltungsgrößen sind ! ( im thermodynamischen Gleichgewicht)
Kanonischer Statistischer Operator:
Übung: Berechnung der Fermi / Boseverteilung
Hilbertraum des großkanonischen statistischen Operators: ( Fock- Raum)