Freie Wellenausbreitung im Vakuum: Difference between revisions

From testwiki
Jump to navigation Jump to search
*>SchuBot
Einrückungen Mathematik
*>SchuBot
m Interpunktion, replaced: , → , (9), ( → ( (5)
 
Line 44: Line 44:
:<math>u(\bar{r},t)=F(\bar{k}\bar{r}-\varpi t)</math>
:<math>u(\bar{r},t)=F(\bar{k}\bar{r}-\varpi t)</math>


mit einer beliebigen , zweifach diffbaren Funktion
mit einer beliebigen, zweifach diffbaren Funktion
:<math>F(\phi )</math> und <math>\varpi =c\left| {\bar{k}} \right|</math>
:<math>F(\phi )</math> und <math>\varpi =c\left| {\bar{k}} \right|</math>
( dÁlembertsche Lösung)
(dÁlembertsche Lösung)
Beweis:
Beweis:


Line 55: Line 55:
muss nicht periodisch in
muss nicht periodisch in
:<math>\phi </math>
:<math>\phi </math>
sein !
sein!
Gegenbeispiel sind solitäre Lösungen / solitäre Wellen = Solitonen :
Gegenbeispiel sind solitäre Lösungen / solitäre Wellen = Solitonen :


Line 106: Line 106:
herum lokalisiert:
herum lokalisiert:


So ergibt sich ein '''Wellenpaket ''', welches im Ortsraum lokalisiert ist !
So ergibt sich ein '''Wellenpaket ''', welches im Ortsraum lokalisiert ist!


Denn: Die Taylorentwicklung der Phase um
Denn: Die Taylorentwicklung der Phase um
Line 141: Line 141:
:<math>\varpi \left( {\bar{k}} \right)=c\left| {\bar{k}} \right|\Rightarrow {{\bar{v}}_{g}}=c\frac{{\bar{k}}}{\left| {\bar{k}} \right|}={{\bar{v}}_{ph}}=\frac{1}{\sqrt{{{\varepsilon }_{0}}{{\mu }_{0}}}}\bar{n}</math>
:<math>\varpi \left( {\bar{k}} \right)=c\left| {\bar{k}} \right|\Rightarrow {{\bar{v}}_{g}}=c\frac{{\bar{k}}}{\left| {\bar{k}} \right|}={{\bar{v}}_{ph}}=\frac{1}{\sqrt{{{\varepsilon }_{0}}{{\mu }_{0}}}}\bar{n}</math>


es gibt also keine Dispersion ( kein zerfließen!)
es gibt also keine Dispersion (kein zerfließen!)


Im Gegensatz zu elektromagentischen Wellen in dispersiven Medien oder quantenmechanischen Materiewellen im Vakuum !
Im Gegensatz zu elektromagentischen Wellen in dispersiven Medien oder quantenmechanischen Materiewellen im Vakuum!


<u>'''Polarisation'''</u>
<u>'''Polarisation'''</u>
Line 159: Line 159:
heißt transversal, wenn
heißt transversal, wenn
:<math>\nabla \cdot \bar{E}(\bar{r},t)=0</math>
:<math>\nabla \cdot \bar{E}(\bar{r},t)=0</math>
( quellenfrei)
(quellenfrei)


:<math>\Rightarrow i\bar{k}\cdot \bar{E}(\bar{r},t)=0\Rightarrow \bar{k}\bot \bar{E}(\bar{r},t)</math>
:<math>\Rightarrow i\bar{k}\cdot \bar{E}(\bar{r},t)=0\Rightarrow \bar{k}\bot \bar{E}(\bar{r},t)</math>
Line 166: Line 166:
heißt longitudinal, wenn
heißt longitudinal, wenn
:<math>\nabla \times \bar{E}(\bar{r},t)=0</math>
:<math>\nabla \times \bar{E}(\bar{r},t)=0</math>
( wirbelfrei)
(wirbelfrei)


:<math>\Rightarrow i\bar{k}\times \bar{E}(\bar{r},t)=0\Rightarrow \bar{k}||\bar{E}(\bar{r},t)</math>
:<math>\Rightarrow i\bar{k}\times \bar{E}(\bar{r},t)=0\Rightarrow \bar{k}||\bar{E}(\bar{r},t)</math>
Line 177: Line 177:
Wegen
Wegen
:<math>\nabla \cdot \bar{B}(\bar{r},t)=0</math>
:<math>\nabla \cdot \bar{B}(\bar{r},t)=0</math>
ist das magnetische Feld stets transversal !
ist das magnetische Feld stets transversal!


Weiter folgt aus:
Weiter folgt aus:
Line 183: Line 183:
:<math>\nabla \times \bar{E}(\bar{r},t)+\dot{\bar{B}}=0</math>
:<math>\nabla \times \bar{E}(\bar{r},t)+\dot{\bar{B}}=0</math>


dass die transversale Komponente des elektrischen Feldes durch die zeitliche Änderung des Magnetfeldes gegeben ist !
dass die transversale Komponente des elektrischen Feldes durch die zeitliche Änderung des Magnetfeldes gegeben ist!


:<math>\begin{align}
:<math>\begin{align}
Line 194: Line 194:
Folglich bilden
Folglich bilden
:<math>\bar{k},{{\bar{E}}_{0}},{{\bar{B}}_{0}}</math>
:<math>\bar{k},{{\bar{E}}_{0}},{{\bar{B}}_{0}}</math>
ein Rechtssystem !
ein Rechtssystem!


Die Richtung von
Die Richtung von
Line 253: Line 253:
:<math>\bar{r}</math>
:<math>\bar{r}</math>
für eine feste Zeit t oder der vorhergehenden zeit -t für einen festen Ort
für eine feste Zeit t oder der vorhergehenden zeit -t für einen festen Ort
:<math>\bar{r}</math>
:<math>\bar{r}</math>.
.
 


<u>'''Spezialfälle:'''</u>
<u>'''Spezialfälle:'''</u>
Line 283: Line 283:
Dies entspricht der Überlagerung zweier linear polarisierter Wellen, die um
Dies entspricht der Überlagerung zweier linear polarisierter Wellen, die um
:<math>\frac{\pi }{2}</math>
:<math>\frac{\pi }{2}</math>
phasenverschoben sind !
phasenverschoben sind!
Der Feldvektor des elektrischen Feldes läuft auf einem Kreis um
Der Feldvektor des elektrischen Feldes läuft auf einem Kreis um


Line 297: Line 297:
- Vektor um
- Vektor um
:<math>\frac{\pi }{2}</math>
:<math>\frac{\pi }{2}</math>
verschoben nach bzw. voraus !
verschoben nach bzw. voraus!


<u>'''Energiedichte der elektromagnetischen Welle:'''</u>
<u>'''Energiedichte der elektromagnetischen Welle:'''</u>
Line 331: Line 331:
:<math>W(r)=4\pi {{r}^{2}}dr{{\varepsilon }_{0}}{{\bar{E}}^{2}}(\bar{r},t)</math>
:<math>W(r)=4\pi {{r}^{2}}dr{{\varepsilon }_{0}}{{\bar{E}}^{2}}(\bar{r},t)</math>


Dabei kann der Exponent der Feldfunktion zeitlich gemittelt werden ( sinus²) und es ergibt sich ein Faktor 1/2:
Dabei kann der Exponent der Feldfunktion zeitlich gemittelt werden (sinus²) und es ergibt sich ein Faktor 1/2:


:<math>W(r)=4\pi {{r}^{2}}dr{{\varepsilon }_{0}}{{\bar{E}}^{2}}(\bar{r},t)=2\pi {{r}^{2}}dr{{\varepsilon }_{0}}\frac{{{{\bar{E}}}_{0}}^{2}}{{{r}^{2}}}=const.</math>
:<math>W(r)=4\pi {{r}^{2}}dr{{\varepsilon }_{0}}{{\bar{E}}^{2}}(\bar{r},t)=2\pi {{r}^{2}}dr{{\varepsilon }_{0}}\frac{{{{\bar{E}}}_{0}}^{2}}{{{r}^{2}}}=const.</math>

Latest revision as of 00:19, 13 September 2010


{{#set:Urheber=Prof. Dr. E. Schöll, PhD|Inhaltstyp=Script|Kapitel=4|Abschnitt=1}} Kategorie:Elektrodynamik __SHOWFACTBOX__


Betrachte einen Raumbereich ohne Quellen:

Damit:

Dies sind die homogenen Wellengleichungen in Lorentz- Eichung

Wegen

gilt auch

Dies folgt auch direkt aus

Allgemeine Lösung von

mit einer beliebigen, zweifach diffbaren Funktion

und

(dÁlembertsche Lösung) Beweis:

Nebenbemerkung:

muss nicht periodisch in

sein! Gegenbeispiel sind solitäre Lösungen / solitäre Wellen = Solitonen :


Der Wellenvektor

zeigt in Ausbreitungsrichtung:


Es gilt:

Die markierten Flächen sind sogenannte Phasenflächen. Dies sind Flächen konstanter Phase:

Somit ergibt sich für ebene Wellen die Bedingung:

Die Ausbreitung der Orte konstanter Phase folgt der Bedingung:

Somit ergibt sich die Phasengeschwindigkeit

spezielle Lösung: Harmonische Ebene Welle

mit der komplexen Amplitude

Die lineare Superposition der Wellen ist wegen der Linearität möglich und lautet formal für die allgemeine Dispersionsrelation

Literatur: Vergleiche FK Brillouin, L. Wave propagation and group velocity

Sei

um

herum lokalisiert:

So ergibt sich ein Wellenpaket , welches im Ortsraum lokalisiert ist!

Denn: Die Taylorentwicklung der Phase um

ergibt

Diese lineare Näherung ergibt nun gerade

Dies ist zu interpretieren als

eine Trägerwelle mit der Phasengschwindigkeit

als Einhüllende, deren Maximum sich mit der Gruppengeschwindigkeit

bewegt:


Wir erhalten die Dispersionsrelation

elektromagnetische Wellen im Vakuum:

es gibt also keine Dispersion (kein zerfließen!)

Im Gegensatz zu elektromagentischen Wellen in dispersiven Medien oder quantenmechanischen Materiewellen im Vakuum!

Polarisation

Betrachte eine elektromagnetische Welle:

Allgemein gilt:

heißt transversal, wenn

(quellenfrei)

heißt longitudinal, wenn

(wirbelfrei)

Für

ist wegen

das elektrische Feld transversal. Wegen

ist das magnetische Feld stets transversal!

Weiter folgt aus:

dass die transversale Komponente des elektrischen Feldes durch die zeitliche Änderung des Magnetfeldes gegeben ist!

Folglich bilden

ein Rechtssystem!

Die Richtung von

legt die Polarisation fest:

Sei

- Achse, also:

Das physikalische Feld ergibt sich zu

und

Aus

Kann

und somit

eliminiert werden:

Dies ist jedoch eine Ellipsengleichung für


Der Feldvektor

läuft als Funktion von

auf einer Ellipse senkrecht zu

um die Achse der Ausbreitungsrichtung. Man spricht von elliptischer Polarisation:


Dabei entspricht die Darstellung dem Ortsvektor

für eine feste Zeit t oder der vorhergehenden zeit -t für einen festen Ort

.


Spezialfälle:

Linear polarisierte Welle:

Dies ist jedoch eine Geradengleichung:

mit reeller Amplitude

Zirkular polarisierte Welle

Dies entspricht der Überlagerung zweier linear polarisierter Wellen, die um

phasenverschoben sind! Der Feldvektor des elektrischen Feldes läuft auf einem Kreis um

Je nach Vorzeichen spricht man von links- bzw. rechtszirkular polarisiertem Licht:

Dabei läuft

dem

- Vektor um

verschoben nach bzw. voraus!

Energiedichte der elektromagnetischen Welle:

reell:

mit

Die Energiedichte ergibt sich gemäß

Für die Energiestromdichte gilt:

Also: Die Energie wird mit Lichtgeschwindigkeit in Richtung

transportiert Für ine Kugelwelle:

verteilt sich die Energie auf eine Kugelschale:

für die Energie in einer Kugelschale mit dem Radius r und der Dicke dr gilt:

Dabei kann der Exponent der Feldfunktion zeitlich gemittelt werden (sinus²) und es ergibt sich ein Faktor 1/2: