Hamilton-Jacobische Differenzialgleichung: Difference between revisions
*>SchuBot Einrückungen Mathematik |
*>SchuBot m →Beispiel: 1 dim Oszi: Pfeile einfügen, replaced: -> → → |
||
Line 223: | Line 223: | ||
Alpha beschreibt also die Gesamtenergie. Physikalisch sinnvoll, da zu dieser Zeit nur potenzielle Energie vorhanden ist. | Alpha beschreibt also die Gesamtenergie. Physikalisch sinnvoll, da zu dieser Zeit nur potenzielle Energie vorhanden ist. | ||
Also: P=E ( Energie) , Q= to ( Zeit) | Also: P=E ( Energie) , Q= to ( Zeit) → Energie und Zeit als neue verallgemeinerte Koordinaten bei der Transformation, die durch | ||
:<math>S(q,P,t)</math> | :<math>S(q,P,t)</math> | ||
erzeugt wird. | erzeugt wird. |
Revision as of 20:49, 12 September 2010
65px|Kein GFDL | Der Artikel Hamilton-Jacobische Differenzialgleichung basiert auf der Vorlesungsmitschrift von Franz- Josef Schmitt des 5.Kapitels (Abschnitt 1) der Mechanikvorlesung von Prof. Dr. E. Schöll, PhD. |
|}}
{{#set:Urheber=Prof. Dr. E. Schöll, PhD|Inhaltstyp=Script|Kapitel=5|Abschnitt=1}} Kategorie:Mechanik __SHOWFACTBOX__
Der einfachste Fall, bei dem alle Koordinaten zyklisch sind:
Allgemeiner wähle man speziell als Erzeugende der kanonischen Trafo:
dann suchen wir die folgende Trafo:
So dass:
Dies ist eine Differenzialgleichung zur Bestimmung von S und der Koordinaten P und Q, die so genannte
Hamilton- Jacobi- Differenzialgleichung.
Eine nichtlineare partielle Differenzialgleichung erster Ordnung für
Also haben wir nur Abhängigkeit von f+1 Variablen:
Die kanonischen Gleichungen lauten:
Lösungsschema für die Hamilton- Jacobi DGL:
- Lösung der Ham- Jacobi-DGL:
- Aus der Erzeugenden
folgt:
mit der implizierten Umkehrung:
möglich wegen
Somit ergeben sich f Gleichungen für q1,...qf
4.
5. Bestimmung von
aus den Anfangsbedingungen:
In drei (3.):
In vier ( 4.):
Nach Gleichungen 3) und 4) ist damit
bestimmt
Physikalische Bedeutung von S:
S kann somit als Wirkungsfunktional interpretiert werden.
Beispiel: 1 dim Oszi
1.
H als Hamiltonfunktion und S als Erzeugende der kanonischen Trafo mit
Hamilton- Jacobi DGL:
2. Lösungsansatz:
Dies ist als Separationsansatz nach q und t zu interpretieren. P ist ein Parameter
Dabei ist die linke Seite unabhängig von t und die rechte unabhängig von q. Die Lösung kann also nur dann für alle t und q übereinstimmen, wenn:
Es folgt:
Also:
Da Potenziale um skalare Faktoren verschoben werden können:
3.
Mit der Nebenbedingung, dass Q=to ( Dimension: Zeit) !
4.
5. Anfangsbedingungen: t=0: p(0)=0, q(0)=q0 ungleich 0 !
Alpha beschreibt also die Gesamtenergie. Physikalisch sinnvoll, da zu dieser Zeit nur potenzielle Energie vorhanden ist.
Also: P=E ( Energie) , Q= to ( Zeit) → Energie und Zeit als neue verallgemeinerte Koordinaten bei der Transformation, die durch
erzeugt wird.
Spezialfall:
Nicht explizit zeitabhängige Hamiltonfunktion H
H ist dann Integral der Bewegung
Hamilton- Jacobi DGL:
Lösungsansatz:
Somit folgt:
Energie bei skleronomen Zwangsbedingungen
heißt verkürztes Wirkungsfunktional
Dieses kann auch als Erzeugende einer kanonischen Trafo ( im engeren Sinn) aufgefasst werden:
Bezug zur Quantenmechanik
- Betrachten wir 1 Teilchen im Potenzial
, gilt auch für
sind dann Flächen im R³:
Dabei sind
Wirkunsgwellen mit einer Phasengeschwindigkeit
Der Teilchenimpuls eines fliegenden Teilchens dagegen berechnet such ebenfalls als Gradient der Erzeugenden:
Damit haben wir jedoch eine Betrachtung der " Wirkungswellen" entgegen einer Darstellung als Teilchen mit Impuls p ( Welle- Teilchen- Dualismus).
In jedem Fall erhält man als Hamilton- Jacobi- DiffGl:
Der Übergang zur Quantenmehcanik ist analog dem Übergang von der geometrischen Optik zur Wellenoptik ( Wellenoptik als geometrische Optik für große Wellenlängen) und geometrische optik als Wellenoptik für kleine Weglängen ( gut Übergangsresultate). Die typische optisch- mechanische Analogie
Wir erhalten in der quantenmechanischen Analogie als Wellenformalismus dagegen die Schödingergleichung:
links mit H = hamiltonoperator in Ortsdarstellung.
als Wellenfunktion
Unsere Koordinatentrafo lautet:
Auch hier sieht man die Analogie bei kleinen Wellenlängen, wenn folgende Näherung erlaubt ist:
Veranschaulichung der Zusammenhänge:
Aus der klassischen Mechanik gelangen wir durch Übergang von Poissonklammernauf Kommutatoren zur Heisenbergschen Matrizenmechanik, die sich zur Quantenmechanik transformieren läßt.
führt man in der klassischen Mechanik dagegen die Hamilton- Jacobi- Theorie ein ( optisch- mechanisches Analogon), so gelangt man leicht zur Wellenmechanik ( Schrödinger) und kann sich auf diesem Weg ebenso der Quantenmechanik nähern.